
ASIC implementation of TMS320C2X DSP
As a second phase of CORDOBA DSP

BSc. Graduation Project
July 2014

Prof.Dr.Mohamed Rizk, Alexandria University
Prof.Dr.Amr Wassal, Cairo University

Communication and Electronics Department,
Faculty of Engineering, Alexandria University

Acknowledgments

First, we thank Allah for our achievements through all the phases of the projects.

We would like to express our great appreciation to Dr. Amr G. Wassal and
Dr.Mohamed Rizk for their great support and their helpful during the Project

We would also like to thank Eng.Amr Abdelaziz Fathi , Eng.Islam Alaa El-
din Mostafa , Eng.Kholoud Rabie El-garhy and Eng.Mohamed Ahmed
Abdelhameed ,Andalus project Team for explaining their Project and for their
Guidance in the project

We would also like to thank Eng.Fady , Eng.Mostafa Sakr and Eng.Islam
Mostafa Si-Ware Engineers for their great advice and assistance Through the
Project

Finally, we would like to thank Si-Ware systems for This Chance to Work with
them

2

Authors

Esraa Ramdan
01283631383, esraa-ramdan222@yahoo.com

Fatma Bahy
01285006459, fatmabahy@gmail.com

Hany Salah Gamal
01145570766, hanygamaleldiin@gmail.com

Khalid Essam El-Sayed
01061462719, k.e.elsayed@ieee.org

Mahomud Mohamed Refaat
010249109810, mahmoud.ref3at@gmail.com

Mohammed Abd El-Fatah Ewais
01147954640, mohammad.a.ewais@gmail.com

Mohammed Ali Omran
01285089981, omranooo66@gmail.com

Mohammed Sami
01273308442, mohamedsami395@gmail.com

Moustafa Emara
01145840256, m.s.emara@ieee.org

Samah Saad Desouky
01222589241, samah saad@ymail.com

Yahya Beltagy
01113375462, ybeltagy@gmail.com

3

This page intentionally left blank.

Contents

1 Introduction 9
1.1 Andalus-DSP . 9
1.2 Cordoba phase . 9
1.3 Toledo Phase . 9
1.4 Book overview . 10

2 Scientific background 11
2.1 DSP . 11

2.1.1 What is a DSP? . 11
2.1.2 DSP evolution and current scenery 12
2.1.3 DSP architecture . 16
2.1.4 DSP applications . 22

2.2 ASIC Flow . 23
2.2.1 Introduction . 23
2.2.2 Generalized ASIC Design Flow 25
2.2.3 ASIC physical design flow 27

3 Architecture 35
3.1 Overview . 35
3.2 Signals description . 36

3.2.1 HDL CPU signal description 37
3.3 Registers Description . 37
3.4 Memory Addressing Modes . 39

3.4.1 Direct Addressing Mode . 39
3.4.2 Indirect Addressing Mode 39
3.4.3 Immediate Addressing Mode 40

3.5 Instruction Set . 41
3.5.1 Instruction symbols . 41
3.5.2 Instruction set summary . 42

3.6 Toledo Block Diagram . 47
3.7 Control Unit . 48

5

CONTENTS CONTENTS

3.7.1 Block Diagram . 48
3.7.2 Block Description . 48
3.7.3 Internal Blocks Description 49
3.7.4 Hazards control . 54
3.7.5 Implementation Notes . 54

3.8 Instruction Decoder . 55
3.8.1 Block Diagram . 55
3.8.2 Block Description . 55
3.8.3 Ports Description . 56
3.8.4 Implementation Notes . 56

3.9 Shifter . 57
3.9.1 Block Diagram . 57
3.9.2 Block Description . 57
3.9.3 Ports Description . 57
3.9.4 Implementation Notes . 58

3.10 Descaling Shifter . 58
3.10.1 Block Description . 58
3.10.2 Ports Description . 58
3.10.3 Implementation Notes . 58

3.11 Scaling Shifter . 58
3.11.1 Block Description . 58
3.11.2 Implementation Notes . 59

3.12 Register File . 60
3.12.1 Block Diagram . 60
3.12.2 Implementation Notes . 60

3.13 CALU . 63
3.13.1 Block diagram . 63
3.13.2 Block Description . 64

3.14 Interrupts . 68
3.15 Architecture Changes . 68

4 Synthesis and layout 73
4.1 Synthesis . 73

4.1.1 Synthesis Process . 73
4.1.2 Faraday’s 130nm . 74
4.1.3 Timing Constraints . 74
4.1.4 Synthesis Results . 77

4.2 Pads and Power . 78
4.2.1 Physical Design . 78
4.2.2 Design Planning . 78
4.2.3 Chip specifications . 87

6

CONTENTS CONTENTS

4.2.4 Bonding pads . 91
4.3 Layout . 93

4.3.1 Technology Files . 93
4.3.2 SoC Encounter . 96
4.3.3 Core and Pads Placement 97
4.3.4 Clock Tree and Power Analysis 97
4.3.5 Bonding Pad Placement . 97
4.3.6 Filler Cell and Route . 97

4.4 Tapeout . 99
4.4.1 Introduction . 99
4.4.2 Defining the standard core cells and IO cells library 100

4.5 Importing GDSII . 103
4.5.1 Importing netlist . 104
4.5.2 DRC . 105
4.5.3 LVS . 106

5 Verification 109
5.1 What is verification . 109
5.2 Why do we need verification . 110
5.3 What to Verify ? . 110
5.4 Different kinds of Verification . 112
5.5 Functional Verification . 113

5.5.1 Functional Verification Approaches 113
5.6 Hardware Verification Languages . 117
5.7 Directed vs Random . 122
5.8 Universal Verification Methodology . 124

5.8.1 Design Specifications . 124
5.8.2 UVM Environment . 126
5.8.3 weak layer . 128
5.8.4 Normal layer . 129
5.8.5 strength layer . 131
5.8.6 Driver . 131
5.8.7 Monitor . 131
5.8.8 Scoreboard . 131
5.8.9 Reference Models . 131

5.9 verification plan . 131
5.9.1 1st phase: First fire: (simple instructions) 132
5.9.2 2nd phase: Block function Verification: 132
5.9.3 3rd phase: Block access repetition: 133
5.9.4 4th phase: Integration phase: 134
5.9.5 Hazards: . 142

7

This page intentionally left blank.

List of Figures

2.1 what is a DSP? . 11
2.2 Evolution of DSP features from their early days until now 13
2.3 Main ADI and TI DSP families. 16
2.4 Microprocessors architectures. 18
2.5 Simplified diagram of the Analog Devices SHARC DSP. 21
2.6 A short selection of DSP fields of use and specific applications . . . 22
2.7 Use of Texas Instruments DSP in an ANC system. 23
2.8 Physical Design Flow . 29
2.9 Ideal clock before CTS . 32
2.10 Clock After CTS . 33

3.1 Signals description . 36
3.2 HDL CPU signal description . 37
3.3 Indirect Addressing Arithmetic Operations 40
3.4 Instruction Symbols . 41
3.5 Instruction Symbols (Continued) 42
3.6 Instruction Set summary . 43
3.7 Instruction Set summary(Continued) 44
3.8 Instruction Set summary(Continued) 45
3.9 Instruction Set summary(Continued) 46
3.10 Toledo Architecture Block diagram 47
3.11 Control unit block diagram . 48
3.12 Stack block diagram . 49
3.13 Instruction decoder block diagram 55
3.14 Shifter block diagram . 57
3.15 Register file block diagram . 60
3.16 When B0 is used as data memory 69
3.17 when B0 used as a program memory 70
3.18 First Read Operation . 70
3.19 Reads in a row . 71
3.20 Address space . 71

9

LIST OF FIGURES LIST OF FIGURES

4.1 Operating Condition of Standard cells and I/O Cells 74
4.2 core Area . 79
4.3 Floarplanning . 81
4.4 Output Pad Circuit . 82
4.5 Input Pad Circuit . 83
4.6 A block diagram of 3.3 V I/O circuts 85
4.7 EM . 85
4.8 illustrates a typical sequence to construct the power structures. . . 88
4.9 pads . 89
4.10 Rings . 90
4.11 STRIPS . 90
4.12 Aluminum and Gold Diameter . 91
4.13 Cross Section plot of a POC configuration 91
4.14 illustrates the usage of the empty guard ring cells cell with the

built-in vertical guard . 92
4.15 HS UMC 0.13 µm characteristics 93
4.16 HS UMC 0.13 µm core cells . 94
4.17 Schematic of ZMA4GS bid-directional buffer 95
4.18 The design flow we used in SoC Encounter 96
4.19 Routed design . 98
4.20 Tapeout flow . 100
4.21 symbol view of an inverter cell . 101
4.22 Layout view of an inverter cell . 102
4.23 symbol view of an I/O cell . 103
4.24 GDSII 3D view . 103
4.25 Layout view of Toledo . 104
4.26 Schematic view of Toledo . 105
4.27 Skewedges DRC error . 106

5.1 verification cycle . 109
5.2 Reconvergent paths in Verification 111
5.3 Functional Verification paths . 113
5.4 Black-box verification of a low-level feature 114
5.5 White-box checks in black-box environment 116
5.6 Part of simulation of Post layout 141

10

Chapter 1

Introduction

1.1 Andalus-DSP

Andalus-DSP is a series of graduation projects working on the implementation
of complete digital signal processor with its software layer, to develop the First
Egyptian Digital Signal Processor that is able to adapt with todays digital signal
processing challenges. Last year was cordoba phase and this year is toledo phase.

1.2 Cordoba phase

In Cordoba phase they were working on the main design and the implementation
of synthesizable RTL code of the DSP core, testing it on FPGA and implementing
a simple assembler for the instruction set of the DSP.

1.3 Toledo Phase

In toledo phase we have worked on RTL design outed from cordoba phase, we
followed ASIC design flow, our work was divided into 3 main phases:

1. verification (for RTL code and for layout)

2. Back-end Design (Physical Design)

3. Optimization of RTL design

11

1.4. BOOK OVERVIEW CHAPTER 1. INTRODUCTION

1.4 Book overview

Chapter 2:

introduces the reader to the basic concepts of digital signal processor, architec-
ture and its applications then gives him background about ASIC design flow and
EDA tools that are used in this work.

Chapter 3:

Architecture of The Toledo DSP

Chapter 4:

talks about the layout of the DSP and the processes made to implement the An-
dalus DSP

Chapter 5:

talks about the verification processes made on the Andalus DSP

12

Chapter 2

Scientific background

2.1 DSP

2.1.1 What is a DSP?

Figure 2.1: what is a DSP?

13

2.1. DSP CHAPTER 2. SCIENTIFIC BACKGROUND

[3] A Digital Signal Processor, or DSP, is a specialized microprocessor that has an
architecture which is optimized for the fast operational needs of digital signal pro-
cessing. A Digital Signal Processor (DSP) can process data in real time, making
it ideal for applications that cant tolerate delays. Digital signal processors take a
digital signal and process it to improve the signal into clearer sound, faster data
or sharper images. Digital Signal Processors use video, voice, audio, temperature
or position signals that have been digitized and mathematically manipulate them.
A digital signal processor is designed to perform these mathematical functions
rapidly. The signals are processed so the information contained in them can be
displayed or converted to another type of signal. DSPs are used in many applica-
tions such as communication systems, aerospace, biometrics, military, automation
and industrial control.

2.1.2 DSP evolution and current scenery

DSPs appeared on the market in the early 1980s. Since then, they have undergone
an intense evolution in terms of hardware features, integration, and software devel-
opment tools. DSPs are now a mature technology. This section gives an overview
of the evolution of the DSP over their 25-year life span [1].

DSP evolution:

• hardware features:

In the late 1970s there were many chips aimed at digital signal process-
ing; however, they are not considered to be digital signal processing owing
to either their limited programmability or their lack of hardware features
such as hardware multipliers. The first marketed chip to qualify as a pro-
grammable DSP was NECs MPD7720, in 1981: it had a hardware multiplier
and adopted the Harvard architecture (more information on this architecture
is given in Section 2.1.3). Another early DSP was the TMS320C10, marketed
by TI in 1982. From a market evolution viewpoint, we can divide the two
and a half decades of DSP life span into two phases: a development phase,
which lasted until the early 1990s, and a consolidation phase, lasting until
now. Figure 2.2 gives an overview of the evolution of DSP features together
with the first year of marketing for some DSP families.

14

CHAPTER 2. SCIENTIFIC BACKGROUND 2.1. DSP

Figure 2.2: Evolution of DSP features from their early days until now

During the market development phase, DSPs were typically based upon the
Harvard architecture. The first generation of DSPs included multiply, add,
and accumulator units. Examples are TIs TMS320C10 and Analog Devices
(ADI) ADSP-2101. The second generation of DSPs retained the architec-
tural structure of the first generation but added features such as pipelin-
ing, multiple arithmetic units, special address generator units, and Direct
Memory Access (DMA). Examples include TIs TMS320C20 and Motorolas
DSP56002. While the first DSPs were capable of fixedpoint operations only,
towards the end of the 1980s DSPs with floating point capabilities started to
appear. Examples are Motorolas DSP96001 and TIs TMS320C30. It should
be noted that the floating-point format was not always IEEE-compatible.
For instance, the TMS320C30 internal calculations were carried out in a
proprietary format; a hardware chip converter was available to convert to
the standard IEEE format. DSPs belonging to the development phase were
characterized by fixed-width instruction sets, where one of each instruction
was executed per clock cycle. These instructions could be complex, and en-
compassing several operations. The width of the instruction was typically
quite short and did not overcome the DSP native word width. As for DSP
producers, the market was nearly equally shared between many manufactur-

15

2.1. DSP CHAPTER 2. SCIENTIFIC BACKGROUND

ers such as AT & T, Fujitsu, Hitachi, IBM, NEC, Toshiba, Texas Instruments
and, towards the end of the 1980s, Motorola, Analog Devices and Zoran.

During the market consolidation phase, enhanced DSP architectures such
as Very Long Instruction Word (VLIW) and Single Instruction Multiple
Data (SIMD) emerged. These architectures increase the DSP performance
through parallelism. Examples of DSPs with enhanced architectures are TIs
TMS320C6xxx DSPs, which was the first DSP to implement the VLIW ar-
chitecture, and ADIs TigerSHARC, that includes both VLIW and SIMD
features. The number of on-chip peripherals increased greatly during this
phase, as well as the hardware features that allow many processors to work
together. Technologies that allow real-time data exchange between host pro-
cessor and DSP started to appear towards the end of the 1990s. This consti-
tuted a real sea change in DSP system debugging and helped the developers
enormously. Another phenomenon observed during this phase was the re-
duction of the number of DSP manufacturers. The number of DSP families
was also greatly reduced, in favour of wider families that granted increased
code compatibility between DSPs of different generations belonging to the
same family. Additionally, many DSP families are not general purpose but
are focused on specific digital signal processing applications, such as audio
equipment or control loops.

• device integration:

Wafer, die, and feature sizes are the basic key factors that define a chip
technology. The wafer size is the diameter of the wafer used in the semicon-
ductor manufacturing process. The die size is the size of the actual chips
carved up in a wafer. The feature size is the size of the smallest circuit com-
ponent (typically a transistor) that can be etched on a wafer; this is used as
an overall indicator of the density of an Integrated Circuit (IC) fabrication
process. The trend in industry is to go towards larger wafers and chip dies,
so as to increase the number of working chips that can be obtained from the
same wafer; also called yield. For instance, the current typical wafer size is
12 inches (300 mm), and some leading chip maker companies plan to move
to 18 inches (450 mm) within the first half of the next decade. (It should be
added that the issue is somewhat controversial, as many equipment manu-
facturers fear that the 18 inches wafer size will lead to scale problems even
worse than for the 12 inches.) Feature size is decreasing, allowing one to ei-
ther have more functionality on a die or to reduce the die size while keeping
the same functionality. Transistors with smaller sizes require less voltage to
drive them; this results in a decrease of the core voltage from 5 V to 1.5 V.

16

CHAPTER 2. SCIENTIFIC BACKGROUND 2.1. DSP

The I/O voltage has been lowered as well, with the caveat that it remains
compatible with the external devices used and their standard. A lower core
voltage has been one of the key factors enabling higher clock frequencies:
in fact, the gap between high and low state thresholds is tightened thus al-
lowing a faster logic level transition. Additionally, the reduced die size and
lowered core voltage allow lower power consumption, an important factor for
portable or mobile system. Finally, the global cost of a chip has decreased
by at least a factor 30 over the last 25 years.

The trend towards a faster switching hardware (including chip over-clocking)
and smaller feature size carries the benefit of increased processing power
and throughput. There is a downside to it, however, represented by the
electromigration phenomenon. Electromigration occurs when some of the
momentum of a moving electron is transferred to a nearby activated ion,
hence causing the ion to move from its original position. Gaps or, on the
contrary, unintended electrical connections can develop with time in the
conducting material if a significant number of atoms are moved far from their
original position. The consequence is the electrical failure of the electronic
interconnects and the consequent shortened chip lifetime.

• software tools:

The improvement of DSP software tools from the early days until now has
been spectacular. Code compilers have evolved greatly to be able to deal
with the underlying hardware complexity and the enhanced DSP architec-
tures. At the same time, they allow the developer to program more and
more efficiently in high-level languages as opposed to assembly coding. This
speeds up considerably the code development time and makes the code itself
more portable across different platforms.

Advanced tools now allow the programming of DSPs graphically, i.e., by
interconnecting pre-defined blocks that are then converted to DSP code.
Examples of these tools are MATLAB Code Generation and embedded tar-
get products and National Instruments’ LabVIEW DSP Module.

High-performance simulators, emulator and debugging facilities allow the
developer to have a high visibility into the DSP with little or no interference
on the program execution. Additionally, multiple DSPs can be accessed in
the same JTAG chain for both code development and debugging.

17

2.1. DSP CHAPTER 2. SCIENTIFIC BACKGROUND

DSP current scenery:

The number of DSP vendors is currently somewhat limited: Analog Devices (ADI),
Freescale (formerly Motorola), Texas Instruments (TI), Renesas, Microchip and
VeriSilicon are the basic players. Amongst them, the biggest share of the market
is taken by only three vendors, namely ADI, TI and Freescale. Table ?? lists
the main DSP families for ADI and TI DSPs, together with their typical use and
performance.

Figure 2.3: Main ADI and TI DSP families.

2.1.3 DSP architecture

One of the biggest bottlenecks in executing DSP algorithms is transferring infor-
mation to and from memory [7]. This includes data, such as samples from the
input signal and the filter coefficients, as well as program instructions, the binary
codes that go into the program sequencer. For example, suppose we need to mul-
tiply two numbers that reside somewhere in memory. To do this, we must fetch
three binary values from memory, the numbers to be multiplied, plus the program
instruction describing what to do.

Figure 2.4 shows how this seemingly simple task is done in a traditional micro-
processor. This is often called a Von Neumann architecture, after the brilliant
American mathematician John Von Neumann (1903-1957).
Von Neumann guided the mathematics of many important discoveries of the early
twentieth century. His many achievements include: developing the concept of
a stored program computer, formalizing the mathematics of quantum mechanics,
and work on the atomic bomb. If it was new and exciting, Von Neumann was there!

As shown in (a), a Von Neumann architecture contains a single memory and a
single bus for transferring data into and out of the central processing unit (CPU).
Multiplying two numbers requires at least three clock cycles, one to transfer each

18

CHAPTER 2. SCIENTIFIC BACKGROUND 2.1. DSP

of the three numbers over the bus from the memory to the CPU. We don’t count
the time to transfer the result back to memory, because we assume that it remains
in the CPU for additional manipulation (such as the sum of products in an FIR
filter).
The Von Neumann design is quite satisfactory when you are content to execute
all of the required tasks in serial. In fact, most computers today are of the Von
Neumann design. We only need other architectures when very fast processing is
required, and we are willing to pay the price of increased complexity.

This leads us to the Harvard architecture, shown in (b). This is named for the
work done at Harvard University in the 1940s under the leadership of Howard
Aiken (1900-1973).
As shown in this illustration, Aiken insisted on separate memories for data and
program instructions, with separate buses for each. Since the buses operate in-
dependently, program instructions and data can be fetched at the same time,
improving the speed over the single bus design. Most present day DSPs use this
dual bus architecture.

Figure (c) illustrates the next level of sophistication, the Super Harvard Architec-
ture. This term was coined by Analog Devices to describe the internal operation
of their ADSP-2106x and new ADSP-211xx families of Digital Signal Processors.
These are called SHARC DSPs, a contraction of the longer term, Super Harvard
Architecture. The idea is to build upon the Harvard architecture by adding fea-
tures to improve the throughput.
While the SHARC DSPs are optimized in dozens of ways, two areas are important
enough to be included in Fig. 2.4 c: an instruction cache, and an I/O controller.

First, let’s look at how the instruction cache improves the performance of the
Harvard architecture. A handicap of the basic Harvard design is that the data
memory bus is busier than the program memory bus. When two numbers are
multiplied, two binary values (the numbers) must be passed over the data mem-
ory bus, while only one binary value (the program instruction) is passed over the
program memory bus.
To improve upon this situation, we start by relocating part of the ”data” to pro-
gram memory. For instance, we might place the filter coefficients in program
memory, while keeping the input signal in data memory. (This relocated data is
called ”secondary data” in the illustration).
At first glance, this doesn’t seem to help the situation; now we must transfer one
value over the data memory bus (the input signal sample), but two values over the
program memory bus (the program instruction and the coefficient). In fact, if we

19

2.1. DSP CHAPTER 2. SCIENTIFIC BACKGROUND

were executing random instructions, this situation would be no better at all.
However, DSP algorithms generally spend most of their execution time in loops.
This means that the same set of program instructions will continually pass from
program memory to the CPU. The Super Harvard architecture takes advantage
of this situation by including an instruction cache in the CPU. This is a small
memory that contains about 32 of the most recent program instructions. The first
time through a loop, the program instructions must be passed over the program
memory bus. This results in slower operation because of the conflict with the
coefficients that must also be fetched along this path. However, on additional ex-
ecutions of the loop, the program instructions can be pulled from the instruction
cache. This means that all of the memory to CPU information transfers can be
accomplished in a single cycle: the sample from the input signal comes over the
data memory bus, the coefficient comes over the program memory bus, and the
program instruction comes from the instruction cache. In the jargon of the field,
this efficient transfer of data is called a high memory access bandwidth.

Figure 2.4: Microprocessors architectures.

20

CHAPTER 2. SCIENTIFIC BACKGROUND 2.1. DSP

Figure 2.5 presents a more detailed view of the SHARC architecture, showing
the I/O controller connected to data memory. This is how the signals enter and
exit the system. For instance, the SHARC DSPs provides both serial and parallel
communications ports. These are extremely high speed connections.
For example, at a 40 MHz clock speed, there are two serial ports that operate at
40 Mbits/second each, while six parallel ports each provide a 40 Mbytes/second
data transfer. When all six parallel ports are used together, the data transfer rate
is an incredible 240 Mbytes/second.
This type of high speed I/O is a key characteristic of DSPs. The overriding goal
is to move the data in, perform the math, and move the data out before the
next sample is available. Everything else is secondary. Some DSPs have onboard
analog-to-digital and digital-to-analog converters, a feature called mixed signal.
However, all DSPs can interface with external converters through serial or parallel
ports. Now let’s look inside the CPU. At the top of the diagram are two blocks
labeled Data Address Generator (DAG), one for each of the two memories. These
control the addresses sent to the program and data memories, specifying where
the information is to be read from or written to. In simpler microprocessors this
task is handled as an inherent part of the program sequencer, and is quite trans-
parent to the programmer. However, DSPs are designed to operate with circular
buffers, and benefit from the extra hardware to manage them efficiently. This
avoids needing to use precious CPU clock cycles to keep track of how the data are
stored. For instance, in the SHARC DSPs, each of the two DAGs can control eight
circular buffers. This means that each DAG holds 32 variables (4 per buffer), plus
the required logic. What is a circular buffer? Circular buffers are limited memory
regions where data are stored in a First-In First-Out (FIFO) way; these memory
regions are managed in a wrap-around way, i.e., the last memory location is fol-
lowed by the first memory location. Two sets of pointers are used, one for reading
and one for writing; the length of the step at which successive memory locations
are accessed is called stride. Address generator units allow striding through the cir-
cular buffers without requiring dedicated instructions to determine where to access
the following memory location, error detection and so on. Circular buffers allow
storing bursts or continuous streams of data and processing them in the order in
which they have arrived.

Why so many circular buffers? Some DSP algorithms are best carried out in
stages. For instance, IIR filters are more stable if implemented as a cascade of
biquads (a stage containing two poles and up to two zeros). Multiple stages re-
quire multiple circular buffers for the fastest operation. The DAGs in the SHARC
DSPs are also designed to efficiently carry out the Fast Fourier transform. In this
mode, the DAGs are configured to generate bit-reversed addresses into the circu-

21

2.1. DSP CHAPTER 2. SCIENTIFIC BACKGROUND

lar buffers, a necessary part of the FFT algorithm. In addition, an abundance of
circular buffers greatly simplifies DSP code generation- both for the human pro-
grammer as well as high-level language compilers, such as C.
The data register section of the CPU is used in the same way as in traditional
microprocessors. In the ADSP-2106x SHARC DSPs, there are 16 general purpose
registers of 40 bits each. These can hold intermediate calculations, prepare data
for the math processor, serve as a buffer for data transfer, hold flags for program
control, and so on. If needed, these registers can also be used to control loops and
counters; however, the SHARC DSPs have extra hardware registers to carry out
many of these functions.
The math processing is broken into three sections, a multiplier, an arithmetic logic
unit (ALU), and a barrel shifter. The multiplier takes the values from two registers,
multiplies them, and places the result into another register. The ALU performs
addition, subtraction, absolute value, logical operations (AND, OR, XOR, NOT),
conversion between fixed and floating point formats, and similar functions. Ele-
mentary binary operations are carried out by the barrel shifter, such as shifting,
rotating, extracting and depositing segments, and so on. A powerful feature of the
SHARC family is that the multiplier and the ALU can be accessed in parallel. In
a single clock cycle, data from registers 0-7 can be passed to the multiplier, data
from registers 8-15 can be passed to the ALU, and the two results returned to any
of the 16 registers. The DMA controller is a second processor working in parallel
with the DSP core and dedicated to transferring information between two memory
areas or between peripherals and memory. In doing so the DMA controller frees
the DSP core for other processing tasks.
A DMA coprocessor can transfer data as well as program instructions, the latter
transfer corresponding typically to the case of code overlay, i.e., of code stored
in an external memory and moved to an internal memory (for instance L1) when
needed. Multiple and independent DMA channels are also available for greater
flexibility. Bus arbitration between the DMA and the DSP core is needed to avoid
colliding memory accesses when the DMA and the DSP core share the same bus to
access peripherals and/or memories. To prevent bottlenecks, recent DSPs typically
fit DMA controllers with dedicated buses.

22

CHAPTER 2. SCIENTIFIC BACKGROUND 2.1. DSP

Figure 2.5: Simplified diagram of the Analog Devices SHARC DSP.

23

2.1. DSP CHAPTER 2. SCIENTIFIC BACKGROUND

2.1.4 DSP applications

Figure 2.6: A short selection of DSP fields of use and specific applications

DSPs appeared on the market in the early 1980s. Over the last 15 years they have
been the key enabling technology for many electronics products in fields such as
communication systems, multimedia, automotive, instrumentation and military.

24

CHAPTER 2. SCIENTIFIC BACKGROUND 2.2. ASIC FLOW

Figure 2.6 gives an overview of some of these fields and of the corresponding typ-
ical DSP applications.

Figure 2.7 shows a real-life DSP application, namely the use of a Texas Instru-
ments (TI) DSP in an Active noise cancellation (ANC) which implements the
acoustically adaptive algorithm that cancels the unwanted sound by generating an
antisound (antinoise) of equal amplitude and opposite phase. The original, un-
wanted sound and the antinoise acoustically combine, resulting in the cancellation
of both sounds.

Figure 2.7: Use of Texas Instruments DSP in an ANC system.

2.2 ASIC Flow

2.2.1 Introduction

Any IC other than a general purpose IC which contain the functionality of- thou-
sands of gates is usually called an ASIC (Application Specific Integrated Circuit).
ASICs are designed to fit a certain application.
An ASIC is a digital or mixed-signal circuit designed to meet specifications set by

25

2.2. ASIC FLOW CHAPTER 2. SCIENTIFIC BACKGROUND

a specific project

• In integrated circuit design, physical design is a step in the standard design
cycle which follows after the circuit design. At this step, circuit representa-
tions of the components (devices and interconnects) of the design are con-
verted into geometric representations of shapes which, when manufactured
in the corresponding layers of materials, will ensure the required functioning
of the components. This geometric representation is called integrated circuit
layout. This step is usually split into several sub-steps, which include both
design and verification and validation of the layout.

• Modern day Integrated Circuit (IC) design is split up into Front-end design
using HDL’s, Verification and Back-end Design or Physical Design. The
next step after Physical Design is the Manufacturing process or Fabrication
Process that is done in the Wafer Fabrication Houses. Fab-houses fabricate
designs onto silicon dies which are then packaged into ICs.

• Each of the phases mentioned above have Design Flows associated with them.
These Design Flows lay down the process and guide-lines/framework for that
phase. Physical Design flow uses the technology libraries that are provided by
the fabrication houses. These technology files provide information regarding
the type of Silicon wafer used, the standard-cells used, the layout rules (like
DRC in VLSI), etc.

• Typically, the IC physical design is categorised into Full custom & Semi-
Custom Design.

1. Full-Custom: Designer has full flexibility on the layout design, no predefined
cells are used.

2. Semi-Custom: Pre-designed library cells (preferably tested with DFM) are
used; designer has flexibility in placement of the cells & routing.

One can refer ASIC for Full Custom design and FPGA for Semi-Custom design
flows.The reason being that one have the flexibility to design/modify design blocks
from Vendor provided libraries in ASIC. This flexibility is missing for Semi-Custom
flows like FPGA (eg. Altera).

26

CHAPTER 2. SCIENTIFIC BACKGROUND 2.2. ASIC FLOW

2.2.2 Generalized ASIC Design Flow

High Level Design:

• Specification Capture

• Design Capture in c, c++, system c, system verilog .

• SW/HW partitioning and ip selection.

RTL design:

27

2.2. ASIC FLOW CHAPTER 2. SCIENTIFIC BACKGROUND

Verilog/VHDL

System Timing and Logic Verification:

- Is the logic working correctly?

Physical Design:

Floorplanning, Place and Route, Clock insertion.

Performance and Manufacturability Verification:

• Extraction of Physical View

• Verification of timing and signal integrity

• Design Rule Checking/ LVS

In our project , we concentrate on verification and physical design . this part will
give you brief explanation about them .

Logic Design and Verification

Design starts with a specification:

• Text description or system specification language

• Example: C , SystemC , SystemVerilog

RTL Description:

• contentAutomated conversion from system specification to RTL possible

• Example: Cadence C-to-Silicon Compiler

• Most often designer manually converts to Verilog or VHDL

Verification:

• Generate test-benches and run simulations to verify functionality

• Assertion based verification

• Automated test-bench generation

28

CHAPTER 2. SCIENTIFIC BACKGROUND 2.2. ASIC FLOW

RTL Synthesis and Verification

RTL Synthesis

• Automated generation of generic gate description from RTL description

• Logic optimization for speed and area

• State machine decomposition, datapath optimization, power optimization

• Modern tools integrate global place-and-route capabilities

Library Mapping

Translates a generic gate level description to a netlist using a target library

Functional or Formal Verification

• HDL ambiguities can cause the synthesis tool to produce incorrect netlist

• Rerun functional verification on the gate level netlist

• Formal verification

Model checking

• prove that certain assertions are true

• Equivalence checking: compare two design descriptions

2.2.3 ASIC physical design flow

The main steps in the ASIC physical design flow are:

• Design Netlist (after synthesis)

• Floorplanning

• Partitioning

• Placement

• Clock-tree Synthesis (CTS)

• Routing

• Physical Verification

29

2.2. ASIC FLOW CHAPTER 2. SCIENTIFIC BACKGROUND

• GDSII Generation

These steps are just the basic. There are detailed PD flows that are used depend-
ing on the Tools used and the methodology/technology.

Some of the tools/software used in the back-end design are:

• Cadence (Cadence Encounter RTL Compiler, Encounter Digital Implementa-
tion, Cadence Voltus IC Power Integrity Solution, Cadence Tempus Timing
Signoff Solution)

• Synopsys (Design Compiler, IC Compiler)

• Magma (BlastFusion, etc.)

• Mentor Graphics (Olympus SoC, IC-Station, Calibre)

A more detailed Physical Design Flow is shown in figure 2.8.
Here you can see the exact steps and the tools used in each step outlined.

30

CHAPTER 2. SCIENTIFIC BACKGROUND 2.2. ASIC FLOW

Figure 2.8: Physical Design Flow

31

2.2. ASIC FLOW CHAPTER 2. SCIENTIFIC BACKGROUND

The ASIC physical design flow uses the technology libraries that are provided
by the fabrication houses. Technologies are commonly classified according to mini-
mal feature size. Standard sizes, in the order of miniaturization, are 2m, 1m , 0.5m
, 0.35m, 0.25m, 180nm, 130nm, 90nm, 65nm, 45nm, 28nm, 22nm, 18nm, 14nm,
etc. They may be also classified according to major manufacturing approaches:
n-Well process, twin-well process, SOI process, etc.

Design netlist

Physical design is based on a netlist which is the end result of the Synthesis pro-
cess. Synthesis converts the RTL design usually coded in VHDL or Verilog HDL
to gate-level descriptions which the next set of tools can read/understand. This
netlist contains information on the cells used, their interconnections, area used,
and other details.

Typical synthesis tools are:

• Cadence RTL Compiler/Build Gates/Physically Knowledgeable Synthesis
(PKS)

• Synopsys Design Compiler

During the synthesis process, constraints are applied to ensure that the design
meets the required functionality and speed (specifications). Only after the netlist
is verified for functionality and timing it is sent for the physical design flow.

Physical Design Steps

1. Floorplanning

The first step in the physical design flow is Floorplanning. Floorplanning
is the process of identifying structures that should be placed close together,
and allocating space for them in such a manner as to meet the sometimes
conflicting goals of available space (cost of the chip), required performance,
and the desire to have everything close to everything else.
Based on the area of the design and the hierarchy, a suitable floorplan is de-
cided upon. Floorplanning takes into account the macros used in the design,
memory, other IP cores and their placement needs, the routing possibilities
and also the area of the entire design. Floorplanning also decides the IO
structure, aspect ratio of the design. A bad floorplan will lead to waste-age
of die area and routing congestion.
In many design methodologies, Area and Speed are considered to be things

32

CHAPTER 2. SCIENTIFIC BACKGROUND 2.2. ASIC FLOW

that should be traded off against each other. The reason this is so is probably
because there are limited routing resources, and the more routing resources
that are used, the slower the design will operate. Optimizing for minimum
area allows the design to use fewer resources, but also allows the sections of
the design to be closer together. This leads to shorter interconnect distances,
less routing resources to be used, faster end-to-end signal paths, and even
faster and more consistent place and route times. Done correctly, there are
no negatives to floorplanning.
As a general rule, data-path sections benefit most from floorplanning, and
random logic, state machines and other non-structured logic can safely be
left to the placer section of the place and route software.
Data paths are typically the areas of your design where multiple bits are
processed in parallel with each bit being modified the same way with maybe
some influence from adjacent bits. Example structures that make up data
paths are Adders, Subtractors, Counters, Registers, and Muxes.

2. Partitioning

Partitioning is a process of dividing the chip into small blocks. This is done
mainly to separate different functional blocks and also to make placement
and routing easier.
Partitioning can be done in the RTL design phase when the design engineer
partitions the entire design into sub-blocks and then proceeds to design each
module. These modules are linked together in the main module called the
TOP LEVEL module. This kind of partitioning is commonly referred to as
Logical Partitioning.

3. Placement

Before the start of placement optimization all Wire Load Models (WLM)
are removed. Placement uses RC values from Virtual Route (VR) to calcu-
late timing. VR is the shortest Manhattan distance between two pins. VR
RCs are more accurate than WLM RCs.

Placement is performed in four optimization phases:

(a) Pre-placement optimization

(b) In placement optimization

(c) Post Placement Optimization (PPO) before clock tree synthesis (CTS)

(d) PPO after CTS.

33

2.2. ASIC FLOW CHAPTER 2. SCIENTIFIC BACKGROUND

• Pre-placement Optimization optimizes the netlist before placement,
HFNs are collapsed. It can also downsize the cells.

• In-placement optimization re-optimizes the logic based on VR. This can
perform cell sizing, cell moving, cell bypassing, net splitting, gate dupli-
cation, buffer insertion, area recovery. Optimization performs iteration
of setup fixing, incremental timing and congestion driven placement.

• Post placement optimization before CTS performs netlist optimization
with ideal clocks. It can fix setup, hold, max trans/cap violations. It
can do placement optimization based on global routing. It re does HFN
synthesis.

• Post placement optimization after CTS optimizes timing with propa-
gated clock. It tries to preserve clock skew.

4. Clock tree synthesis
The goal of clock tree synthesis (CTS) is to minimize skew and insertion

Figure 2.9: Ideal clock before CTS

delay. Clock is not propagated before CTS as shown in the picture. After
CTS hold slack should improve. Clock tree begins at .sdc defined clock
source and ends at stop pins of flop. There are two types of stop pins known

34

CHAPTER 2. SCIENTIFIC BACKGROUND 2.2. ASIC FLOW

as ignore pins and sync pins. Dont touch circuits and pins in front end
(logic synthesis) are treated as ignore circuits or pins at back end (physical
synthesis). Ignore pins are ignored for timing analysis. If clock is divided
then separate skew analysis is necessary.

• Global skew achieves zero skew between two synchronous pins without
considering logic relationship.

• Local skew achieves zero skew between two synchronous pins while con-
sidering logic relationship.

• If clock is skewed intentionally to improve setup slack then it is known
as useful skew.

Rigidity is the term coined in Astro to indicate the relaxation of constraints.
Higher the rigidity tighter is the constraints

Figure 2.10: Clock After CTS

In clock tree optimization (CTO) clock can be shielded so that noise is not
coupled to other signals. But shielding increases area by 12 to 15%. Since the

35

2.2. ASIC FLOW CHAPTER 2. SCIENTIFIC BACKGROUND

clock signal is global in nature the same metal layer used for power routing
is used for clock also. CTO is achieved by buffer sizing, gate sizing, buffer
relocation, level adjustment and HFN synthesis. We try to improve setup
slack in pre-placement, in placement and post placement optimization before
CTS stages while neglecting hold slack. In post placement optimization after
CTS hold slack is improved. As a result of CTS lot of buffers are added.
Generally for 100k gates around 650 buffers are added.

5. Routing

There are two types of routing in the physical design process, global routing
and detailed routing. Global routing allocates routing resources that are
used for connections. Detailed routing assigns routes to specific metal layers
and routing tracks within the global routing resources.

6. Physical Verification

Physical verification checks the correctness of the generated layout design.
This includes verifying that the layout

• Complies with all technology requirements Design Rule Checking (DRC)

• Is consistent with the original netlist Layout vs. Schematic (LVS)

• Has no antenna effects Antenna Rule Checking

• Complies with all electrical requirements Electrical Rule Checking
(ERC).

36

Chapter 3

Architecture and Modifications

3.1 Overview

Toledo Architecture, based on TMS320c2x Architecture from Texas instruments,
and provides 139 16-bit fixed point instructions.

Pipeline Operation, Three-level pipeline stages: Fetch, Decode and Execute, which
allows three different instructions to be active during any given cycle.

External Memory and I/O Interface, Toledo supports a wide range of system
interfacing requirements thus maximizing system throughput.
The system interface consists of:

• A 16-bit parallel data bus (D15D0).

• A 16-bit address bus (A15A0).

• External maskable Interrupts for External devices.

• External nonmaskable interrupt for Reset.

• Various system control signals.

Arithmetic Logic Unit, performs 2s-complement arithmetic s using 32-bit ALU
and accumulator.
The ALU is a general purpose arithmetic unit that operates using 16-bit words
taken from data RAM or derived from immediate instructions or using the 32-bit
result of the multipliers product register.
In addition to the usual arithmetic instructions, the ALU can perform Boolean
operations, providing the bit manipulation ability required of a high- speed con-
troller.

37

3.2. SIGNALS DESCRIPTION CHAPTER 3. ARCHITECTURE

Multiplier, The parallel multiplier performs a 16 16-bit 2s-complement multipli-
cation with a 32-bit result in a single instruction cycle.
The multiplier consists of three elements:
T register, P register and multiplier array, The 16-bit T register temporarily stores
the multiplicand; the P register stores the 32-bit product. The fast on-chip multi-
plier allows the device to perform efficiently the fundamental DSP operations such
as convolution, correlation, and filtering. The scaling shifter has a 16-bit input
connected to the data bus and a 32-bit output connected to the ALU. The scaling
shifter produces a left shift of 0 to 16 bits on the input data, as programmed in
the instruction. The LSBs of the output are filled with zeros, and the MSBs may
be either filled with zeros or sign-extended, depending upon the state of the sign-
extension mode bit of status register ST1. Additional shift capabilities enable the
processor to perform numerical scaling, bit extraction, extended arithmetic, and
overflow prevention [4].

3.2 Signals description

Figure 3.1: Signals description

38

CHAPTER 3. ARCHITECTURE 3.3. REGISTERS DESCRIPTION

3.2.1 HDL CPU signal description

Figure 3.2: HDL CPU signal description

3.3 Registers Description

39

3.3. REGISTERS DESCRIPTION CHAPTER 3. ARCHITECTURE

40

CHAPTER 3. ARCHITECTURE 3.4. MEMORY ADDRESSING MODES

3.4 Memory Addressing Modes

1. Direct addressing mode

2. Indirect addressing mode

3. Immediate addressing mode

3.4.1 Direct Addressing Mode

In the direct memory addressing mode, the instruction word contains the lower
seven bits of the data memory address (dma).
This field is concatenated with the nine bits of the data memory page pointer (DP)
register to form the full 16-bit data memory address. Thus, the DP register points
to one of 512 possible 128-word data memory pages, and the 7-bit address in the
instruction points to the specific location within that data memory page. The
DP register is loaded through the LDP (load data memory page pointer), LDPK
(load data memory page pointer immediate), or LST (load status register ST0)
instructions.

3.4.2 Indirect Addressing Mode

The auxiliary registers (AR) provide flexible and powerful indirect addressing.
Eight auxiliary registers (AR0AR7) are provided. To select a specific auxiliary
register, the auxiliary register pointer (ARP) is loaded with a value from 0 through
7 designating AR0 through AR7.
The following symbols are used in indirect addressing, including bit-reversed (BR)
addressing:

[*] Contents of AR(ARP) are used as the data memory address.

[*] Contents of AR(ARP) are used as the data memory address, then decre-
mented after the access.

[*+] Contents of AR(ARP) are used as the data memory address, then incre-
mented after the access.

[*0] Contents of AR(ARP) are used as the data memory address, and the
contents of AR0 subtracted from it after the access.

[*0+] Contents of AR(ARP) are used as the data memory address, and the
contents of AR0 added to it after the access.

[*BR0] Contents of AR(ARP) are used as the data memory address, and the
contents of AR0 subtracted from it, with reverse carry (rc) propagation, after the
access.

41

3.4. MEMORY ADDRESSING MODES CHAPTER 3. ARCHITECTURE

[*BR0+] Contents of AR(ARP) are used as the data memory address, and the
contents of AR0 added to it, with reverse carry (rc) propagation, after the access.

Follows the indirect addressing arithmetic operations specified by the op-code:

Figure 3.3: Indirect Addressing Arithmetic Operations

The bit-3 in the instruction op-code specifies if the ARP will be modified after
fetching the address and performing the specified operation on AR(ARP).
If it is one, the ARP will contain the value specified in bits 2-0 in the instruction.

3.4.3 Immediate Addressing Mode

In immediate addressing, the instruction word(s) contains the value of the imme-
diate operand. The DSP has both single-word (8-bit and 13-bit constant) short
immediate instructions and two-word (16-bit constant) long immediate instruc-
tions.
The immediate operand is contained within the instruction word itself in short
immediate instructions. In long immediate instructions, the word following the
instruction opcode is used as the immediate operand. The following short im-
mediate instructions contain the immediate operand in the instruction word and
execute within a single instruction cycle. The length of the constant operand is
instruction-dependent.

42

CHAPTER 3. ARCHITECTURE 3.5. INSTRUCTION SET

3.5 Instruction Set Architecture

3.5.1 Instruction symbols

Figure 3.4: Instruction Symbols

43

3.5. INSTRUCTION SET CHAPTER 3. ARCHITECTURE

Figure 3.5: Instruction Symbols (Continued)

3.5.2 Instruction set summary

Figure 3.6 shows the instruction set summary for the Andalus processor. Included
in the instruction set are four special groups of instructions to improve overall
processor throughput and ease of use.

• Extended-precision arithmetic (ADDC, SUBB, MPYU, BC, BNC, SC, and
RC)

• Adaptive filtering (MPYA, MPYS, and ZALR)

• Control and I/O (RHM, SHM, RTC, STC, RFSM, and SFSM)

• Accumulator and register (SPH, SPL, ADDK, SUBK, ADRK, SBRK, ROL,
and ROR).

44

CHAPTER 3. ARCHITECTURE 3.5. INSTRUCTION SET

Figure 3.6: Instruction Set summary

45

3.5. INSTRUCTION SET CHAPTER 3. ARCHITECTURE

Figure 3.7: Instruction Set summary(Continued)

46

CHAPTER 3. ARCHITECTURE 3.5. INSTRUCTION SET

Figure 3.8: Instruction Set summary(Continued)

47

3.5. INSTRUCTION SET CHAPTER 3. ARCHITECTURE

Figure 3.9: Instruction Set summary(Continued)

48

CHAPTER 3. ARCHITECTURE 3.6. TOLEDO BLOCK DIAGRAM

3.6 Toledo Block Diagram

Figure 3.10: Toledo Architecture Block diagram

49

3.7. CONTROL UNIT CHAPTER 3. ARCHITECTURE

3.7 Control Unit

3.7.1 Block Diagram

Figure 3.11: Control unit block diagram

3.7.2 Block Description

The control unit is the DSP controller, it manages the pipeline and generates the
required control signals each clock cycle to manage the DSP operation[5].

50

CHAPTER 3. ARCHITECTURE 3.7. CONTROL UNIT

3.7.3 Internal Blocks Description

1. Stack: It is a 8x16-bit stack that holds the value of the PC in case of CALL
or INERRUPT

Figure 3.12: Stack block diagram

2. Special Registers: The user has no direct access to those registers, but there
are some instructions that affects them directly or indirectly:

(a) PFC Holds the address of the instruction being fetched

(b) PC Holds the address of the next instruction to be fetched

(c) ST0 Status register

51

3.7. CONTROL UNIT CHAPTER 3. ARCHITECTURE

(d) ST1 Status register

52

CHAPTER 3. ARCHITECTURE 3.7. CONTROL UNIT

53

3.7. CONTROL UNIT CHAPTER 3. ARCHITECTURE

54

CHAPTER 3. ARCHITECTURE 3.7. CONTROL UNIT

(e) RPTC Is an 8-bit register that holds the value used with the instruction
repeat property.

(f) IFR Interrupt flag register

(g) IR Holds the instruction being executed

(h) QIR Holds the instruction fetched by fetch unit

55

3.7. CONTROL UNIT CHAPTER 3. ARCHITECTURE

(i) DECODED Holds the decoded value of the instruction being executed

(j) QDECODED Holds the decoded value of the instruction fetched with
fetch unit

3. Fetch/Decode Unit The first stage of the pipeline. It fetches the instruction
specified by the PFC to the QIR register. In the last cycle of the fetch
operation, the instruction is decoded and the decode value is stored in the
QDECODED register. If the PFC was pointing to an internal-block address
(in ROM or in B0), the fetch and decode operations takes one cycle.

4. Execute Unit In each clock cycle, the execute unit generates the control
signals for the current execution state for the instruction in the IR register.

3.7.4 Hazards control

1. Structural Hazards The shared resources between the Fetch and Execute
units (the pipeline stages) are:

(a) ROM

(b) B0 (if it is configured as program memory)

(c) External Address space

(d) Program Bus

(e) Address Bus

The used solution is to make two utilization registers, one for the execute
unit and another for the fetch unit. Each resource from the mentioned has a
one bit status in each of the registers. Each of the two units has read access
to the other unit status register and a write access to its status register.
Before a unit uses one of the previous resources, it makes sure that its bit
is not set in the other unit status register, then it sets it in its own status
register to indicate allocation of the resource.

2. Data Hazards: The only problem happens in case of jump, in which the fetch
unit fetches an instruction which will not be used. In this case, the QIR and
QDECODED are flushed out and the execute unit waits till the fetch unit
fetches the instruction at the jump destination.

3.7.5 Implementation Notes

The implementation of the execute unit is a hard wired control signal generator,
to use less area and make the execution faster.

56

CHAPTER 3. ARCHITECTURE 3.8. INSTRUCTION DECODER

3.8 Instruction Decoder

3.8.1 Block Diagram

Figure 3.13: Instruction decoder block diagram

3.8.2 Block Description

A component that provides the execute unit with some execution information
about the instruction to be executed:

1. Number of execution states

57

3.8. INSTRUCTION DECODER CHAPTER 3. ARCHITECTURE

2. Long (2 word) or short (1 word) instruction

3. If indirect memory access exists

4. If direct memory access exists

5. The instruction number (8-bits code that specifies the instruction)

3.8.3 Ports Description

3.8.4 Implementation Notes

The component is implemented as nested comparators that checks the instruction
bits.

58

CHAPTER 3. ARCHITECTURE 3.9. SHIFTER

3.9 Shifter

3.9.1 Block Diagram

Figure 3.14: Shifter block diagram

3.9.2 Block Description

A shifter that shifts the output of the multiplier by the value selected by sel signal
as follows:

3.9.3 Ports Description

59

3.10. DESCALING SHIFTER CHAPTER 3. ARCHITECTURE

3.9.4 Implementation Notes

The component is implemented as multiplexers, where each output bit is connected
to a 4x1 multiplexer.

3.10 Descaling Shifter

3.10.1 Block Description

A shifter that shifts left the output of the CALU by value from 0 to 7,selected by
sel signal, then its output will be the low 16-bit or the high 16-bit of the shifted
result using the low high input signal.

3.10.2 Ports Description

3.10.3 Implementation Notes

The component is implemented as multiplexers, where each output bit is connected
to a 7x1 multiplexer (a signal from each input bit in shifting range).

3.11 Scaling Shifter

3.11.1 Block Description

A shifter that shifts left the input of the CALU by value from 0 to 15,selected by
sel signal.

Ports Description

60

CHAPTER 3. ARCHITECTURE 3.11. SCALING SHIFTER

3.11.2 Implementation Notes

The component is implemented as multiplexers, where each output bit is connected
to a 32x1 multiplexer (a signal from each input bit and its inverse).

61

3.12. REGISTER FILE CHAPTER 3. ARCHITECTURE

3.12 Register File

3.12.1 Block Diagram

Figure 3.15: Register file block diagram

Block Description
This unit is a 16-bit register file along with its own ARAU unit. It is mainly used
for the different indirect addressing modes supported by the DSP.

3.12.2 Implementation Notes

This component is divided into two main components, the register file and the
ARAU. The implementation of the register file was straight forward; write to
the register specified by the ARP when the write signal is enabled, the output
of the register file is always the contents of that specified register. As for the
implementation of the ARAU, two units of an n bit adder were used, one for the
normal add/subtract operations and one for the reverse carry operations.

62

CHAPTER 3. ARCHITECTURE 3.12. REGISTER FILE

63

3.12. REGISTER FILE CHAPTER 3. ARCHITECTURE

64

CHAPTER 3. ARCHITECTURE 3.13. CALU

3.13 CALU

3.13.1 Block diagram

65

3.13. CALU CHAPTER 3. ARCHITECTURE

3.13.2 Block Description

The central arithmetic logic unit (CALU) contains a 16-bit scaling shifter, a 16 x
16-bit parallel multiplier, a 32-bit arithmetic logic unit (ALU), a 32-bit accumu-
lator (ACC), and additional shifters at the outputs of both the accumulator and
the multiplier.

Multiplier

Overview

Multiplication is a very important operation for most DSP common algorithms,
convolution and filtering are the most common ones. These operations requires big
number of multiplications and additions. So, doing the multiplication operation
efficiently is an important thing to be considered in DSP design.
The Multiplier utilizes a 16 16-bit hardware multiplier, which is capable of com-
puting a signed or unsigned 32-bit product in a single machine cycle. All multiply
instructions, except the MPYU (multiply unsigned) instruction, perform a signed
multiply operation in the multiplier. That is, the two numbers being multiplied
are treated as 2s complement numbers, and the result is a 32-bit 2s complement
number. The following two registers are associated with the multiplier:

1. A 16-bit temporary register (TR) that holds one of the operands for the
multiplier,

2. A 32-bit product register (PR) that holds the product.

The output of the product register can be left-shifted 1 or 4 bits. This is useful for
implementing fractional arithmetic or justifying fractional products. The output
of the PR can also be right-shifted 6 bits to enable the execution of up to 128
consecutive multiply/accumulates without the possibility of overflow.
An LT (load T register) instruction normally loads the TR to provide one operand
(from the data bus), and the MPY (multiply) instruction provides the second
operand (also from the data bus). A multiplication can also be performed with an
immediate operand using the MPYK instruction. In either case, a product can be
obtained every two cycles.
Two multiply/accumulate instructions (MAC and MACD) fully utilize the com-
putational bandwidth of the multiplier, allowing both operands to be processed
simultaneously. This provides for single-cycle multiply/accumulates when used
with repeat (RPT/RPTK) instructions. The SQRA (square/add) and SQRS
(square/subtract) instructions pass the same value to both inputs of the multi-
plier for squaring a data memory value.

66

CHAPTER 3. ARCHITECTURE 3.13. CALU

The MPYU instruction performs an unsigned multiplication, which greatly facil-
itates extended-precision arithmetic operations. The unsigned contents of the T
register are multiplied by the unsigned contents of the addressed data memory
location, with the result placed in the P register. This allows operands of greater
than 16 bits to be broken down into 16-bit words and processed separately to gen-
erate products of greater than 32 bits.
Four product shift modes (PM) are available at the PR output and are useful when
performing multiply/accumulate operations and fractional arithmetic, or when jus-
tifying fractional products. The PM field of status register ST1 specifies the PM
shift mode, as shown in Table below.

Radix 4 Multiplier

The most trivial multiplier approach is the array multiplier. Generating a partial
products to be summed to form the operation product. For each bit in the multi-
plicand, a partial product is generated, if the bit chosen is 0, the partial product
is all zeros, and if that bit is 1, the partial product is the same as multiplier. For
the 16 by 16 bits array multiplier, a 15 summation stages are needed, which is big
number of logic gates and lots of power consumption.
A very famous approach to reduce number of summation stages needed is the radix
4 multiplier. Booth multiplier reduces the number of logic levels needed to eight
levels for 16x16 operations. That is because we process 3 bits at the time instead
of one.
Due to the need for a parallel multiplier, other multiplication options like array
multiplication or radix-2 booth multiplication became not applicable because of
the large area or the large power consumption. Therefore, radix-4 booth multiplier
is the best choice because of its reduced logic levels, and better power consump-
tion.
The multiplier consists of eight units of the booth encoder, each one of them is
responsible for processing 3 bits from the input. The operation of each MBE
(multiplication booth encoder) goes like the following:

1. Extend the sign bit one bit in case of a logic vector of odd size.

2. Add 0 to the LSB (least significant bit) of the multiplier.

67

3.13. CALU CHAPTER 3. ARCHITECTURE

3. According to the 3 bits that are send to the decoder, define the operation as
one of the following operations mention in the table.

4. The multiplication by 2 or by -2 is done by shifting and the addition is done
using a 16-bit adder.

5. Each MBE produce 2 bits of the final product, called the partial product.

6. Last MBE produces 18 bits not only 2 bits for the final product.

ALU and Accumulator

32-bit ALU and accumulator implement a wide range of arithmetic and logical
operations, Once an operation is performed in the ALU, the result is transferred
to the accumulator where additional operations such as shifting may occur. Data
that is input to the ALU may be scaled by the scaling shifter.

ALU

The ALU is a general-purpose arithmetic and logical unit that operates on 16-bit
words taken from data bus or derived from immediate instructions. One input
to the ALU is always provided from the accumulator, and the other input may
be provided from the product register (PR) of the multiplier or the input scaling
shifter that has fetched data from the RAM on the data bus. After the ALU
has performed the arithmetic or logical operations, the result is stored in the
accumulator.

68

CHAPTER 3. ARCHITECTURE 3.13. CALU

Accumulator

The 32-bit accumulator is split into two 16-bit segments for storage in data mem-
ory: ACCH (accumulator high) and ACCL (accumulator low). Shifters at the
output of the accumulator provide a left-shift of 0 to 7 places. This shift is per-
formed while the data is being transferred to the data bus for storage. The contents
of the accumulator remain unchanged. When the ACCH data is shifted left, the
LSBs are transferred from the ACCL, and the MSBs are lost. When ACCL is
shifted left, the LSBs are zero-filled, and the MSBs are lost.

ALU Operations op-codes

69

3.14. INTERRUPTS CHAPTER 3. ARCHITECTURE

3.14 Interrupts

The DSP has external maskable user interrupts available for external devices that
interrupt the processor. Internal interrupts are generated by the timer (TINT), and
by the software interrupt (TRAP) instruction. Interrupts are prioritized with reset
(RS) having the highest priority and the serial port transmit interrupt (XINT)
having the lowest priority.
When an interrupt occurs, it is stored in the 6-bit interrupt flag register (IFR). This
register is set by the external user interrupts and the internal interrupts RINT,
XINT, and TINT. Each interrupt is stored in the IFR until it is recognized, and
then automatically cleared by the IACK (interrupt acknowledge) signal or the
RS (reset) signal. The RS signal is not stored in the IFR. No instructions are
provided for reading from or writing to the IFR. The DSP has a memory-mapped
interrupt mask register (IMR) for masking external and internal interrupts. The
layout of the register is shown in Figure 1. A 1 in bit positions 5 through 0 of the
IMR enables the corresponding interrupt, provided that INTM = 0. The IMR is
accessible with both read and write operations but cannot be read using BLKD.
When the IMR is read, the unused bits (15 through 6) are read as 1s. The lower
six bits are used to write to or read from the IMR. Note that RS is not included
in the IMR, and therefore the IMR has no effect on reset.

The INTM (interrupt mode) bit, which is bit 9 of status register ST0, enables or
disables all maskable interrupts. INTM = 0 enables all the unmasked interrupts,
and INTM = 1 disables these interrupts. The INTM is set to 1 by the IACK
(interrupt acknowledge) signal, the DINT instruction, or a reset. This bit is reset
to 0 by the EINT instruction. Note that the INTM does not actually modify the
IMR or IFR.

3.15 Architecture Changes

• Internal Memories TMS320C25 architecture employs four different internal
memories. Three of which are RAMs called B0, B1 and B2, and the Fourth
is a ROM. There are also 6 memory mapped registers.
The ROM has a size of 4096 words, 16 bits wide, Accessible by a 12 bits

70

CHAPTER 3. ARCHITECTURE 3.15. ARCHITECTURE CHANGES

address. It is used only as a program memory.

B0 has a size of 256 words, 16 bits wide. It has the ability to be config-
ured as data memory or program memory at run time. This gives user the
ability to add new programs to the chip without actually using an external
programmer. One can configure B0 as a data memory, receive new programs
through the serial port for example, write it on B0 block, then convert it to
a program memory and use the code.

B1 and B2 have a size of 256 and 32 respectively. They can only be used
as data memories. The processor uses two separate memory spaces for pro-
gram and data accessible by 16 bit address. Each space can be divided to
512 pages of 128 words each. The spaces are as shown in figure 3.16 when
B0 is used as data memory. And in Figure 3.17 when used as a program
memory.

Figure 3.16: When B0 is used as data memory

71

3.15. ARCHITECTURE CHANGES CHAPTER 3. ARCHITECTURE

Figure 3.17: when B0 used as a program memory

• External Asynchronous Memory

Because our library was lacking memory cells, and we did not have access
to memory compilers, we were forced to remove all internal memories and
suffice with just the external memory. For our architecture we chose to use
an asynchronous memory of 8ns access delay. This is the best delay of an
asynchronous memory we could find.

Figure 3.18: First Read Operation

72

CHAPTER 3. ARCHITECTURE 3.15. ARCHITECTURE CHANGES

Figure 3.19: Reads in a row

Although it would limit our operating frequency, it was the best solution. A
synchronous memory would require burst operation which would force us to
further change the architecture.

Our chosen memory IC is 256K words, accessible by an 18 bits address,
Second and third quarters are used as data and program memories, the first
and last are unused. It has the timing diagrams shown in Fig 3.18 , 3.19.
Since we don’t use the internal memories, we have activated the reserved
areas in the memory map. All the address spaces are now used and accessible
from the external memory, except for the memory mapped registers, these are
6 registers tied to the operation of serial port, timer and other peripherals.
They cannot be used from external memory. Our address space is that in
Figure 3.20.

Figure 3.20: Address space

73

3.15. ARCHITECTURE CHANGES CHAPTER 3. ARCHITECTURE

• Required Changes Since the core was only verified for internal memory usage,
and the memory interface and control signals were not tested, we had to
design those from the beginning.

The processor has 4 memory interface signals and the address and data ports,
we first had to change the memory address decoders inside the processors to
map the addresses to the new memory map. And then setup the memory
interface signals to work as required. After this was done, major changes in
the instruction decoder and control logic were added to allow the memory
access delays. Instructions that would previously execute and access internal
memory in the same cycle would now take to cycles to do so with external
memories. This essentially added a pipeline stage for memory accesses [6].

74

Chapter 4

Synthesis and layout

4.1 Synthesis

4.1.1 Synthesis Process

The synthesis process infers a possible gate-level realization of the input RTL
description that meets user-defined constraints such as area, timings or power
consumption.

The design constraints are defined outside the VHDL models by means of tool-
specific commands. The targeted logic gates belong to a library that is provided
by a foundry or an IP company as part of a so-called design kit.
Typical gate libraries include a few hundreds of combinational and sequential logic
gates. Each logic function is implemented in several gates to accommodate several
fan-out capabilities or drive strengths. The gate library is described in a tool-
specific format that defines, for each gate, its function, its area, its timing and
power characteristics and its environmental constraints.

The synthesis step generates several outputs: a gate-level VHDL netlist, a
Verilog gatelevel netlist, and a SDF description. The first netlist is typically used
for post-synthesis simulation, while the second netlist is better suited as input to
the place&route step.

The SDF description includes delay information for simulation. Note that
considered delays are at this step correct for the gates but only estimated for the
interconnections.

For out project we used Synopsys Design Compiler for the synthesis stage. We
provided the RTL, the constraints and script files and the library technology files.
It generates the required verilog netlist in addition to SDF, SDC files and the
synthesis reports.

75

4.1. SYNTHESIS CHAPTER 4. SYNTHESIS AND LAYOUT

4.1.2 Faraday’s 130nm

The Faraday library is a 0.13m family standard cell library tailored for UMCs
0.13m High Speed (HS) process. The process employs copper wiring and FSG
dielectric. This library offers five (5) to eight (8) metal layers. It is optimized for
applications requiring high speed and ultra high density.
8-track (3.2m) cell height has the industrys smallest cell layout area (250K gates/mm
2). This librarys optimized drive strength is based on Faradays rich experience
of over 1,000 successful ASIC projects. It provides an extensive library database
that is easy to manage and use.
The library uses a 1.2v supply voltage for core cells and a 3.3v supply for IO cells.
It can operate in a range of -40 to 125 C as shown in Fig 4.1.

Figure 4.1: Operating Condition of Standard cells and I/O Cells

The library consists of three db files (library files input to Design Compiler)
one for the typical case (temperature of 25 C) , another for the minimum case
and the third is for the maximum case. Each of these libraries contain wire load
models to be used for modeling wire resistance and capacitance for different cases
and about 400 logic cells.

4.1.3 Timing Constraints

Requirements:

We were offered a 1425x1425mm chip area from TIEC. And our design was re-
quired to operate at a frequency of 100MHz. Our design’s timing was further
limited by other factors, the first being the memory interface and the second is the
limited power available for the pads which would limit the operating frequency to
50MHz.
The memory timing diagrams require that the address is stable before memory
control signals become valid. Violating this in case of read operations is harm-
less, but in case of write operations it might cause data to be written to wrong
addresses.
To avoid such erroneous operations our first approach was to use a PLL to in-
troduce phase shifts between the address and control signals, effectively delaying

76

CHAPTER 4. SYNTHESIS AND LAYOUT 4.1. SYNTHESIS

them after the address is stable. A PLL from our Faraday’s library was used to
achieve this. This approach was later dropped as the PLL required 2 IO pads,
which we could not afford.
Our Second Approach was to extend the write operation to occupy two cycles.
Generating the address in the first, holding it for both cycles and generating the
control signals in the second. This approach however would limit our performance,
and was therefore dropped.
The third approach we used was to activate some memory control signals at the
negative clock level. The address and all control signals except RW are output at
positive clock edge as normal, then RW signal follows at the negative edge, this
gives a time of half clock cycle for the address to be stable. This is shown in Figure
below.

Constraints:

After removing the Internal memories and using only external ones, the area of
the architecture was no longer an issue. Our main concern is to meet the timing
requirements and be able to achieve the necessary changes for memory interface.
Our design was synthesized at 100MHz, that is a clock cycle of 10ns. Accounting
for the input and output delays of each synthesized block, load attached to them,
their loads on the driving cells and the clock latency and uncertainty. The RW
signal that activates on the negative clock edge was further constrained to make
its delay as low as possible. The following is a sample of a written constraints
script for one of our designs.

77

4.1. SYNTHESIS CHAPTER 4. SYNTHESIS AND LAYOUT

set ideal transition .3 [get ports rst]
Set input delay for all inputs
All inputs are registered
set input delay -clock clk -max .5 [all inputs]
remove input delay [get ports clk rst]
Set output delay for all outputs
Outputs go directly to registers
set output delay -clock clk -max .5 [all outputs]

Defining loads
Load of Registered Inputs
set driving cell -lib cell DFFCHD [all inputs]
remove driving cell [get ports clk rst]

Load of a DFF
set load [load of fsc0h d generic core tt1p2v25c/DFFCHD/D] [all outputs]

Wire loads
set wire load mode enclosed
set auto wire load selection true
set compile fix multiple port nets true

Operating Conditions
set min library fsc0h d generic core ss1p08v125c.db -min version fsc0h d generic core ff1p32vm40c.db
set operating conditions -max WCCOM -max library fsc0h d generic core ss1p08v125c

78

CHAPTER 4. SYNTHESIS AND LAYOUT 4.1. SYNTHESIS

-min BCCOM -min library fsc0h d generic core ff1p32vm40c

Compile
set fix hold clk
set enable recovery removal arcs true
check design
uniquify
compile ultra

Reports
report constraint -all violators -verbose > report/DC/calu constraints.rpt
report area -hierarchy -physical > report/DC/calu area.rpt
report timing -crosstalk delta -capacitance > report/DC/calu timing.rpt
report power > report/DC/calu power.rpt
report cell > report/DC/calu cell.rpt

save designs
write -hierarchy -format ddc -output ”mapped/calu.ddc”
write -hierarchy -format verilog -output ”netlist/calu.v”
write sdc sdc/calu.sdc
write sdf sdf/calu.sdf

4.1.4 Synthesis Results

Some of our blocks have slightly missed the required timing requirements, working
at 100 MHz, but since we have reduced our operating frequency to 50MHz this
was no longer a problem. The core achieved an area of 65519.35, and a total power
consumption of 0.8823 mW (without the clock tree). The following is a portion
from our generated reports.

79

4.2. PADS AND POWER CHAPTER 4. SYNTHESIS AND LAYOUT

4.2 Pads and Power

4.2.1 Physical Design

[2] Converting gate-level netlist to physical layout circuit representations of the
components (devices and interconnects) of the design are converted into geometric
representations of shapes which, when manufactured in the corresponding layers of
materials, will ensure the required functioning of the components. This geometric
representation is called integrated circuit layout. This step is usually split into
several sub-steps, which include both design and verification and validation of the
layout.

4.2.2 Design Planning

Efficient design implementation of any ASIC requires an appropriate style or plan-
ning approach that enhances the implementation cycle time and allows the design
goals such as area and performance to be met. There are two style alternatives for
design implementation of an ASIC , flat or hierarchical

1. Flat

• Small to Medium ASIC

• Better Area Usage Since no reserve space around each sub-design for
power/ground

2. Hierarchical

• For very large design

80

CHAPTER 4. SYNTHESIS AND LAYOUT 4.2. PADS AND POWER

• When sub-systems are design individually

• Possible only if a design hierarchy exist

Floor Planning

It is the first step of physical layout implementation a floor plan should include
the following decisions :-

- Size of layout
- Core area
- Placement of I/O pad and io pins
- Placement of hard macros

Step 1 Size of the layout:-

The first step in floor planning is to define the outline of the layout. If the layout
is rectangular, only the length and the width of the layout are required.

Step 2 Core Area :-

The core area is usually defined by specifying the distance between the edge of the
layout and the core(core utilization to all chip)

Figure 4.2: core Area

81

4.2. PADS AND POWER CHAPTER 4. SYNTHESIS AND LAYOUT

All standard cells must be placed in the core area. I/O pads and macros do
not have this restriction although it is common to place macros in the core area.
The area outside the core can be used to place the I/O pads, the I/O pins, and
the core power rings.
Standard cells are placed in rows, similar to placing books on a book shelf. The
rows are called cell rows and are drawn inside the core area. All cell rows have the
same height.

Step 3 Placements of IO Pads and IO Pins Geometries:-

For a chip-level layout, the next step is to place the IO pads. The P&R tool
can fill the gaps between the pads with pad filler cells and corner cells. For a
block-level layout, the user needs to define the location and geometries (size and
metal layer) of every IO pin
I/O pad circuits translate the signal levels used in the ASIC core to the signal
levels used outside the ASIC. Additionally, the I/O pad circuits clamp signals to
the power and ground rails to limit the voltage at the external connection to the
ASIC I/O pad. This clamping reduces signal overshoot and prevents damage from
Electrostatic Discharge (ESD).

good I/O system has the following properties:-

• Drives large capacitances typical of off-chip signals

• Operates at voltage levels compatible with other chips

• Limits slew rates to control high-frequency noise

• Protects chip against damage from electrostatic discharge (ESD)

• Protect against over-voltage damage

• Has a small number of pins (low-cost)

• Pad consists of a square of top-level metal o on a side that is either soldered
to bond wire connecting to a package or coated with lead solder ball.
Pad refers to metal square only or to the complete I/O cell containing the
metal, ESD protection circuit, and I/O transistors.
Also sometimes it contains built in receiver and driver circuits to perform
level conversion and amplification.
Pad size is defined usually by the minimum size to which a bond wire can
be attached.

82

CHAPTER 4. SYNTHESIS AND LAYOUT 4.2. PADS AND POWER

• The spacing of the pads is defined by the minimum pitch at which bonding
machines can operate.

Figure 4.3: Floarplanning

There are three types of ASIC input and output pads:

• General-purpose input and output pads

• Power and ground pads

• Special purpose input and output pads

Power and ground pads provide connections to the various ASIC power and ground
busses. The metal connections from the pad to the power or ground bus within
the power and ground pad or to the ASIC core are made as wide as possible and
on as many metal layers as practical to minimize their resistance and maximize
the current carrying capacity.

83

4.2. PADS AND POWER CHAPTER 4. SYNTHESIS AND LAYOUT

Special purpose I/O pads encompass cells with unusual or especially stringent
requirements, or cells that are primarily analog. Some examples are crystal os-
cillator cells, Universal Serial Bus (USB) transceivers, Peripheral Component In-
terconnect (PCI), Low-Voltage Differential Signaling (LVDS), and isolated analog
signal, power, and ground cells

It is critical to functional operation of an ASIC design to insure that the pads
have adequate power and ground connections and are placed properly in order to
eliminate electromigration and current-switching noise related problems

Output pads:-

Figure 4.4: Output Pad Circuit

Drive large off-chip loads (2 50 pF) With suitable rise/fall times Requires chain
of successively larger buffers Guard rings to protect against latchup Large nMOS
output transistor Output Pads must have sufficient drive capability to deliver
adequate rise and fall times into given capacitive load.
If the pad drives resistive load it must also deliver enough current to meet the
required DC transfer characteristics.
Also, output pads generally contains adequate buffering to reduce the load seen
by the on-chip circuitry driving the pad.

84

CHAPTER 4. SYNTHESIS AND LAYOUT 4.2. PADS AND POWER

Inputs pads:-

Figure 4.5: Input Pad Circuit

Level conversion Higher or lower off-chip V
Noise filtering Schmitt trigger Hysteresis changes VIH, VIL Protection against
electrostatic discharge

Input pads ESD protection

Input pads have transistor gates connected directly to the external world. These
gates are subject to damage from electrostatic discharge that can puncture and
break down the oxide A protection circuit from diodes and resistors is used to
clampthe input signal
Pads could be designed according to following criteria:

85

4.2. PADS AND POWER CHAPTER 4. SYNTHESIS AND LAYOUT

• Core-limited

• Pad-limited

Core limited:

The internal core of the chip determines the size of the chip, so thin pads are
required.
The input/output circuitry is placed on either side of the pad

PAD limited:

The input/output circuitry is placed toward the center of the chip

86

CHAPTER 4. SYNTHESIS AND LAYOUT 4.2. PADS AND POWER

Figure 4.6: A block diagram of 3.3 V I/O circuts

Some cosideration to be taken when design pads:-

Electro-Migration (EM)
The Electro-Migration (EM) effect occurs when the Direct Current (DC) density
in a power supply line is too high, causing the electron flow to push around the
metal grains and wear out the metal line during the lifetime of a chip. The EM
effect on a power cell results when the high current demanded by the I/O buffers
flows from the power pad through the metal wire of the power lines, inducing the
EM effect The EM effect on the ground cell is a similar phenomenon; the cur-
rent flows back to the ground pad through the metal wire, causing the EM effect.
Therefore, the EM effect on the power/ground depends on the current-carrying
capacity of its metal wire, and the current-carrying capacity depends on its metal
wire width

Figure 4.7: EM

87

4.2. PADS AND POWER CHAPTER 4. SYNTHESIS AND LAYOUT

SSO Noise Effects

SSO Push-out:

the extent of the propagation delay caused by the SSO noise during the simultane-
ous switching of several drivers, which is an important concern in the synchronous
circuits. The maximum delay is due to the maximum allowable simultaneous
switching output buffers. Different numbers of simultaneous switching output
buffers have different delay variations.

False Toggle in Non-Switching Output:

the false state of quiet buffers as a result of SSO noise, which is an important
concern in asynchronous circuits. Higher noise is tolerable at the mid-cycle, as
long as the voltage settles within the sampling time. Please note that the max-
imum tolerable noise (The maximum noise immunity of the input receivers) not
only depends on the switching noise pulse amplitude, but also on its width.

ESD

• Your body has a capacitance of a few hundred pF

• You can become charged with static electricity to 10kV

• ESD protection structures dissipate the ESD and prevent gate overvoltage

• The ESD protection structure must be able to dissipate an energy of CV2=10mJ

to Calculate I/O-to-P/G Ratio by Considering Electro-Migration

The I/O-to-Power/Ground (I/O-to-P/G) ratio represents the number of I/O buffers
that can be connected to one power or ground pad. The operating frequency and
loading capacitance of the I/O buffer should be taken into consideration if you
want to calculate the I/O-to-P/G ratio with consideration to the EM.
That is, the loading capacitor must be charged and discharged at a rate that
is equal to the operating frequency A lot of current is required if many buffers
switch simultaneously, and the metal wire of the power or ground pads must have
enough current-carrying capacity in order to avoid the EM effect. Suppose that N
buffers are connected to one power/ground pad pair Current required N buffer: I
= NCdv/dt = NCVf where f is the operating frequency, V is the operation voltage,
and C is the capacitor load

88

CHAPTER 4. SYNTHESIS AND LAYOUT 4.2. PADS AND POWER

4.2.3 Chip specifications

Step 1 Size of the layout

Rectangular floor plan with size 1525*1525

Step 2 Core Area

The core area to all chip 0.1

Step 3 Placements of IO Pads

We use pad limited type
Pad size = 75*63
Pad spacing =60
we need 4 power and ground to supply core on chip
f= 75mhz
c=8pf
v=3.3v
i= 102.4 mA

we need 3 power and ground to supply input,output pads
one to supply input buffers it can supply up to N=102.4/75mhz*3.3v *8pf=314 at
least
one to supply output buffers it can supply up to N=102.4/75mhz*3.3v *8pf=314
one to supply bidirectional buffers it can supply up to N=102.4/75mhz*3.3v *8pf=314

Buffers and pads used from tech library:-

XMHA Programmable 3.3V input buffer, pad limit
YA4GSHA 4 to 16 mA programmable 3.3V output buffer, pad limit
VCCKHA Power supply for internal core cells and I/O to core interfaces, pad limit
VCC3IHA Power supply for 3.3V input buffers and output pre-drivers, pad limit
VCC3OHA Power supply for 3.3V output buffers and input ESD protection, pad
limit
VCC3IOHA Power supply for 3.3V input/output buffers, pad limit
GNDKHA Ground for internal core cells and I/O to core interfaces , pad limit
GND3IHA Ground for input buffers and output pre-drivers, pad limit
GND3OHA Ground for output buffers and input ESD protection, pad limit
GND3OHA Ground for output buffers and input ESD protection, pad limit

89

4.2. PADS AND POWER CHAPTER 4. SYNTHESIS AND LAYOUT

Power Planning:-

The next step is to plan and create power and ground structures for both I/O
pads and core logic. The I/O pads power and ground busses are built into the pad
itself and will be connected by abutment.
For core logic, there is a core ring enclosing the core with one or more sets of power
and ground rings. A horizontal metal layer is used to define the top and bottom
sides, or any other horizontal segment, while the vertical metal layer is utilized for
left, right, and any other vertical segment. These vertical and horizontal segments
are connected through an appropriate via cut. The next consideration is to con-
struct the standard cell power and ground that is internal to the core logic. These
internal core power and ground busses consist of one or two sets of wires or strips
that repeat at regular intervals across the core logic, or specified region, within
the design. Each of thesepower and ground strips run vertically, horizontally, or
in both directions.

The key consideration for power planning is:

- an acceptable IR-drop from the power pads to all power pins
- meeting electro-migration requirements
- does not result in routing congestion
- compact layout
A power plan consists of several types of power structure.
Figure 4.8 illustrates a typical sequence to construct the power structures.

Figure 4.8: illustrates a typical sequence to construct the power structures.

90

CHAPTER 4. SYNTHESIS AND LAYOUT 4.2. PADS AND POWER

How to construct the power structures?

1. core power rings are routed first

2. core power pads are connected to the core power rings

3. the power rings are added around the macros where necessary

4. vertical stripes and horizontal stripes are added to reduce the IR- drop at
the power rails of the standard cells and the macros

5. the power pins of the hard macros are tapped to the core rings or the power
stripes

6. if tie-high and tie-low cells are not used, the tie-high and tie-low inputs to
the hard macros and IO pads are tapped to the power structures

7. the power rails for the standard cell are added to the power plan The power
rails can tap the power from the core power rings, the power stripes and the
macro power rings

Figure 4.9: pads

91

4.2. PADS AND POWER CHAPTER 4. SYNTHESIS AND LAYOUT

Figure 4.10: Rings

Figure 4.11: STRIPS

Power ring and power strips are made in metal 7,8 Width =0.4 Space=0.4
according to the tech files

92

CHAPTER 4. SYNTHESIS AND LAYOUT 4.2. PADS AND POWER

4.2.4 Bonding pads

Typically it is composed from all the metal layers stacked on top of each other
and connected through vias; which allows efficient connection between the IO
pads pins through the package leads. The connections between the Bonding pads
and the package leads are achieved through sufficient low resistance wire (Gold or
Aluminum), using Aluminum is cheaper than Gold but with a lower performance
than Gold,

Figure 4.12: Aluminum and Gold Diameter

The above dimensions is obtained from Quik-Pak Microelectronic Packaging &
Assembly Solutions
After comparing Gold allowed pitch with Aluminum we find that using gold will
allow us to use higher number of IO pads using same area.
For our design we were allowed to use only 90um Pad Pitch but we were allowed
to use a Bonding Pad Over Circuit (POC) configuration, a cross section plot of a
POC configuration is given in the next figure.

Figure 4.13: Cross Section plot of a POC configuration

93

4.2. PADS AND POWER CHAPTER 4. SYNTHESIS AND LAYOUT

Given that we are using:

1. 1525x1525 chip size

2. 60x152 IO pad

3. 47x72 Bonding pad

By calculating the number of Bonding pads we could use for each side:

First, we subtract 1525um (side length) from 152umx2(IO pad length at each
side):
1525-152x2=1221

second, we calculate the largest number of bonding pads could be added in each
side:
60x13+30x12=1140

having 13 Bonding pads in each side allows us to use 52 Bonding pad.

From the above calculation we found that there are 60um spaces between the
IO pads, in which it is highly recommended to insert the empty guard ring cells
with the built-in vertical guard ring in the boundary of the power domain. The
empty guard ring cells cells with the built-in vertical guard ring are used to prevent
the latch-up issue. figure 4.14 illustrates the usage of the empty guard ring cells
cell with the built-in vertical guard ring.

Figure 4.14: illustrates the usage of the empty guard ring cells cell with the built-in
vertical guard

94

CHAPTER 4. SYNTHESIS AND LAYOUT 4.3. LAYOUT

4.3 Layout

4.3.1 Technology Files

The provided technology files are UMC’s 130 nm Faraday development kit.
The kit contains three different technology files suited for different purpose.
They are High Speed (HS), Low Leakage (LL) and Standard Process (SP).
All cores fabricated on the same wafer must use the same technology.
All teams participating in FabCat Academic round used HS process, so did we.
HS process supports up to 8 metal layers.

Figure 4.15 shows the characteristics of the process.
The library contains a wide variation of core cells, Figure 4.16 lists the types of
core cells in the kit.

Figure 4.15: HS UMC 0.13 µm characteristics

95

4.3. LAYOUT CHAPTER 4. SYNTHESIS AND LAYOUT

Figure 4.16: HS UMC 0.13 µm core cells

Special cells are also included,as the clock load cell that is used to solve clock
skew problems, delay cells to delay a signal when necessary, variable sized filler
cells used to fill inter cell free spaces, and Tie-High and Tie-Low cells that are used
to force constant high or low voltage respectively.
There are other special cells included in the library but they are not used in our
layout.
All the Input-Output (IO) pads are programmable. They have a programmable
schmitt trigger and a programmable pull-up/down resistors.
We used the schmitt trigger to provide noise free input and output from the chip,
at the expense of the increased delay.
pull-up/down resistors are not used since the memory interface doesn’t requre the
bus to be pulled to any level.
The drive capability (driving current) for output and input/output (I/O) pads is
also programmable for the values of {2mA, 4mA, 8mA, 12mA, 16mA}. We have
chosen the 8mA driving current since it’s sufficient for driving the memory pins,

96

CHAPTER 4. SYNTHESIS AND LAYOUT 4.3. LAYOUT

higher driving current needs more power pads. Figure 4.17 shows the I/O pad
which can be considered as a general case for input and output pads.

Figure 4.17: Schematic of ZMA4GS bid-directional buffer

97

4.3. LAYOUT CHAPTER 4. SYNTHESIS AND LAYOUT

4.3.2 SoC Encounter

The tool used in the layout process is Cadence’s SoC Encounter. SoC Encounter
is the most famous EDA tool used in automated digital design layout.

The inputs to the tool is the LEF files, lib files, verilog netlist, timing con-
straints and pad placement file. LEF file is one of the technology files that provide
information about the top view of the core and IO cells. This information include
input and output port names and location, metal layers contained within the cell
and the cell’s total area. lib files includes the timing information of the cells. The
verilog netlist is the output file of the synthesis tool. It describes the gates con-
tained in the design and their connection. Timing constraints file describes the
timing information of each cell in the netlist. Pad placement file describes the type
and location of each IO pad. Outputs files form Encounter are the GDSII stream,
timing constraints and various reports, The GDSII file is a description of the layout
in terms of layers and masks. The timing constraints file is used for post-layout
verification. The reports includes design rule checks (DRC) to check that the lay-
out is consistent with the process’s constraints. The reports also includes timing,
gate count, clock tree and power reports.

Figure 4.18 shows the used flow in Encounter. The remaining subsections in
this chapter describe the design flow on SoC Encounter.

Figure 4.18: The design flow we used in SoC Encounter

98

CHAPTER 4. SYNTHESIS AND LAYOUT 4.3. LAYOUT

4.3.3 Core and Pads Placement

Placement is the process constraining the die area, then specifying the location of
each logic block. The location of each logic block will greatly influence the wire
latency and area. We first placed the IO pads and then let the tool decide the best
placement for core logic in order to optimize the latency and the area.
IO pads can be divided into 4 groups; Data, address, control and power pads.
Pads are arranged in a way to minimize the crossing of PCB wires that interfaces
the chip to the memory.

4.3.4 Clock Tree and Power Analysis

Clock tree is responsible for the distribution of the clock throughout the core.
The clock signal should reach the all the memory elements in the same time, so
delay logic is inserted on faster paths to slow them down The clock source should
also have strong drive capability since it’s connected to all memory elements.
In fact the clock and reset signals have the highest fan-out of all other nets.
To increase the drive capability, buffers are inserted in the clock tree.

4.3.5 Bonding Pad Placement

Bonding pads are a set of metal layers soldered to the wires connecting the core
to the package.
The connect the package to the pad logic(buffers). Bonding pads must be placed
such that the pitch to pitch is no less than 90um.
This results in the necessity of adding empty cells between pads to separate them
by a distance greater than the pitch. Empty cells provide continuity in the pad
power ring. Cells of different voltage levels are separated by latch up protection
pads.
They prevent the latch up that can happen on the chip power up. Pad On Chip
(POC) bonding pads are used, the bonding pad is placed directly above the pad
logic.

4.3.6 Filler Cell and Route

Core filler cells are used to fill any spaces between regular library cells to avoid
planarity problems.
The logo ”Toledo CU-AU 2014” is placed on the north west corner of the chip.
It helps the fab identify which side is north by rotating the chip until the logo is
readable.

99

4.3. LAYOUT CHAPTER 4. SYNTHESIS AND LAYOUT

Final design routing is done after successful clock tree synthesis. The automated
router tries to optimize the wire lengths in order to meet the timing constraints.
Figure 4.19 shows the design after wire routing.

Figure 4.19: Routed design

100

CHAPTER 4. SYNTHESIS AND LAYOUT 4.4. TAPEOUT

4.4 Tapeout

4.4.1 Introduction

why we need tapeout
Chip building is time consuming and challenging because there are many things to
be considered and much more that can be easily overlooked. On top of such time
constraints and complexity is the reality of operating the chip under unforgiving
physical rules. If its not done properly, it doesnt work, It is the rules that the
fabrication lab gives it to us it is DRC/LVS rules.
The final result of the design cycle for integrated circuits, the point at which the
artwork for the photomask of a circuit is sent for manufacture.
First tapeout is rarely the end of work for the design team. Most chips will go
through a set of spins in which fixes are implemented after testing the first article.

Many different factors can cause a spin, including:

First tapeout is rarely the end of work for the design team. Most chips will go
through a set of spins in which fixes are implemented after testing the first article.
Many different factors can cause a spin, including

• The taped-out design fails final checks at the foundry due to problems man-
ufacturing the design itself.

• The design is successfully fabricated, but the first article fails functionality
tests.

101

4.4. TAPEOUT CHAPTER 4. SYNTHESIS AND LAYOUT

Figure 4.20: Tapeout flow

First define the standard core cells library and the IO cells library by three
different views:

1. Layout

2. Schematic

3. Symbol

Second, import the Placed and routed GDSII to a custom design tool (Cadence
Virtuoso were used for that), also we import the Netlist Schematic. Finally, import
the design from custom design tool libraries to DRC and LVS tool (Calibre were
used for this).

4.4.2 Defining the standard core cells and IO cells library

The custom design tool must use a reference for the design files you are importing,
such that every imported cell has a Layout, symbol and a schematic.

102

CHAPTER 4. SYNTHESIS AND LAYOUT 4.4. TAPEOUT

The first refrence for the custom design tool must be the manufacturer techology
files used that will be the first thing you will define in the custom design tool.
Then it comes to the part that you must import the libraries that define the layout,
symbol and schematic. That part is not straight through the custom design tool;
you may have to export the schematic of a symbol or a layout to get those views
referenced.

Next, is an example of layout view of an inverter cell used in the core and its
symbol used followed by I/O cell layout and schematic view:

Figure 4.21: symbol view of an inverter cell

103

4.4. TAPEOUT CHAPTER 4. SYNTHESIS AND LAYOUT

Figure 4.22: Layout view of an inverter cell

104

CHAPTER 4. SYNTHESIS AND LAYOUT 4.5. IMPORTING GDSII

Figure 4.23: symbol view of an I/O cell

4.5 Importing GDSII

First, let us define the GDS format and how it look like to the manufacturer,
GDS = Graphic Database System Is a database file format which is the factory
industry standard for data exchange of integrated circuit or IC layout artwork.
It is a binary file format representing planar geometric shapes, text labels, and
other information about the layout in hierarchical form. The data can be used to
reconstruct all or part of the artwork to be used in sharing layouts, transferring
artwork between different tools, or creating photomasks. During tapeout stages
the design passes through different operation and checks which causes the GDSII
to be modified several times. Next is a Sample of a 3D view of GDSII and the
layout of Toledo after exporting the GDS:

Figure 4.24: GDSII 3D view

105

4.5. IMPORTING GDSII CHAPTER 4. SYNTHESIS AND LAYOUT

Figure 4.25: Layout view of Toledo

4.5.1 Importing netlist

First, when exporting the netlist we must refer to the technology library we used
(umc 0.13) you must notice also that the netlist we are exporting must be fully
defined; because in the next step(LVS) it will be our reference for comparing with
the exported layout and checking that both has the same functionality.
Next is the Netlist of Toledo :

106

CHAPTER 4. SYNTHESIS AND LAYOUT 4.5. IMPORTING GDSII

Figure 4.26: Schematic view of Toledo

4.5.2 DRC

Design rule check (DRC) examines conformity of layout with geometric rules
imposed by the target process.
Next is an example of a DRC error called skewedges:

107

4.5. IMPORTING GDSII CHAPTER 4. SYNTHESIS AND LAYOUT

Figure 4.27: Skewedges DRC error

4.5.3 LVS

This is the step of comparing the layout generated in the custom design tool (Ca-
dence virtuoso) vs. the netlist.

Common errors in this step is :

• Error: Different numbers of nets.

108

CHAPTER 4. SYNTHESIS AND LAYOUT 4.5. IMPORTING GDSII

Here the number of nets in the layout is different from the number of nets
in the schematic.

• Error: Different numbers of instances.
Here the number of instances in the layout is different from the number of
instances in the schematic.

109

This page intentionally left blank.

Chapter 5

Verification

5.1 What is verification

Figure 5.1: verification cycle

Verification is the act of reviewing, inspecting or testing, in order to establish and
document that a product, service or system meets the specifications that is meant
for Verification (in Digital Design) is a process that parallels the process of the

111

5.2. WHY DO WE NEED VERIFICATION CHAPTER 5. VERIFICATION

design . A designer reads the hardware specification for a block, interprets the
human language description, and creates the corresponding logic in a machine-
readable form, usually RTL code [9].
As a verification engineer, you must read the hardware specification, create the
verification plan, and then follow it to build tests showing the RTL code correctly
implements the features. By having more than one person perform the same inter-
pretation, you have added redundancy to the design process. As the verification
engineer, your job is to read the same hardware specifications and make an inde-
pendent assessment of what they mean. Your tests then exercise the RTL to show
that it matches your interpretation .

5.2 Why do we need verification

This section talk about the importance of verification and why do we have to spend
time and money in verification .
Today, in the era of multi-million gate ASICs and FPGAs, reusable intellectual
property (IP), and system-on-a-chip (SoC) designs, verification consumes about
70% of the design effort. Design teams, properly staffed to address the verification
challenge, include engineers dedicated to verification. The number of verification
engineers can be up to twice the number of RTL designers . Due to the complexity
of SOCs and IPs designs these days , the verification process has been created to
solve this problem and give methodologies to assure that design is working properly.
As we have said that this process takes a lot of time and effort which could reach
to 70% of the project time , Parallelism is there to reduce the verification process
time .
If efforts can be parallelized, additional resources can be applied effectively to
reduce the total verification time. For example, digging a hole in the ground
can be parallelized by providing more workers armed with shovels. To parallelize
the verification effort, it is necessary to be able to write and debugtestbenches in
parallel with each other as well as in parallel with the implementation ofthe design.
Providing higher abstraction levels enables you to work more efficiently without
worrying about low-level details. Using a backhoe to dig the same hole mentioned
above is an example of using a higher abstraction level.

5.3 What to Verify ?

One of the most important questions you must be able to answer is:”What are you
verifying?” The purpose of verification is to ensure that the result of some trans-
formation is as intended or as expected. For example, the purpose of balancing

112

CHAPTER 5. VERIFICATION 5.3. WHAT TO VERIFY ?

a checkbook is to ensure that all transactions have been recorded accurately and
confirm that the balance in the register reflects the amount of available funds.

Figure 5.2: Reconvergent paths in Verification

5.2 shows that verification of a transformation can be accomplished only through
a second reconvergent path with a common source. The transformation can be
any process that takes an input and produces an output.
RTL coding from a specification, insertion of a scan chain, synthesizing RTL code
into a gate-level netlist and layout of a gate-level netlist are some of the transforma-
tions performed in a hardware design project. The verification process reconciles
the result with the starting point. If there is no starting point common to the
transformation and the verification, no verification takes place.
What types of bugs are lurking in the design? The easiest ones to detect are at
the block level, in modules created by a single person. Did the ALU correctly add
two numbers? Did every bus transaction successfully complete?
Did all the packets make it through a portion of a network switch? It is almost
trivial to write directed tests to find these bugs as they are contained entirely
within one block of the design. After the block level, the next place to look for
discrepancies is at boundaries between blocks. Interesting problems arise when
two or more designers read the same description yet have different interpretations.
For a given protocol, what signals change and when? The first designer builds a
bus driver with one view of the specification, while a second builds a receiver with
a slightly different view. Your job is to find the disputed areas of logic and maybe
even help reconcile these two different views.
To simulate a single design block, you need to create tests that generate stimuli
from all the surrounding blocks a difficult chore. The benefit is that these low-
level simulations run very fast. However, you may find bugs in both the design
and testbench as the latter will have a great deal of code to provide stimuli from

113

5.4. DIFFERENT KINDS OF VERIFICATION CHAPTER 5. VERIFICATION

the missing blocks. As you start to integrate design blocks, they can stimulate
each other, reducing your workload. These multiple block simulations may un-
cover more bugs, but they also run slower.
At the highest level of the DUT, the entire system is tested, but the simulation
performance is greatly reduced. Your tests should strive to have all blocks per-
forming interesting activities concurrently. All I/O ports are active, processors are
crunching data, and caches are being refilled. With all this action, data alignment
and timing bugs are sure to occur. At this level you are able to run sophisticated
tests that have the DUT executing multiple operations concurrently so that as
many blocks as possible are active. What happens if an MP3 player is playing
music and the user tries to download new music from the host computer? Then,
during the download, the user presses several of the buttons on the player? You
know that when the real device is being used, someone is going to do all this, so
why not try it out before it is built? This testing makes the difference between
a product that is seen as easy to use and one that locks up over and over. Once
you have verified that the DUT performs its designated functions correctly, you
need to see how it operates when there are errors. Can the design handle a partial
transaction, or one with corrupted data or control fields? Just trying to enumer-
ate all the possible problems is difficult, not to mention how the design should
recover from them. Error injection and handling can be the most challenging part
of verification.

5.4 Different kinds of Verification

There are different kinds of verification , There is :

1. Functional Verification

2. Formal Verification

3. Static timing Verification

- We will focus on Functional Verification in this book

114

CHAPTER 5. VERIFICATION 5.5. FUNCTIONAL VERIFICATION

5.5 Functional Verification

Figure 5.3: Functional Verification paths

It is the task of verifying that the logic design conforms to specification. In ev-
eryday terms, functional verification attempts to answer the question ”Does this
proposed design do what is intended?” This is a complex task, and takes the ma-
jority of time and effort in most large electronic system design projects. Functional
verification is a part of more encompassing design verification, which, besides func-
tional verification, considers non-functional aspects like timing and layout [8].

5.5.1 Functional Verification Approaches

1. Black-Box Verification

Black-box verification cannot look at or know about the inside of a design
(RTL specification).With a black-box approach, functional verification is per-
formed without any knowledge of the actual implementation of a design. All
verification is accomplished through the available interfaces, without direct
access to the internal state of the design, without knowledge of its structure
and implementation. This method suffers from an obvious lack of visibility
and controllability. It is often difficult to set up an interesting state combi-
nation or to isolate some functionality. It is equally difficult to observe the
response from the input and locate the source of the problem. This difficulty
arises from the frequent long delays between the occurrence of a problem
and the appearance of its symptom on the designs outputs.

- Test Case is independent of implementation

115

5.5. FUNCTIONAL VERIFICATION CHAPTER 5. VERIFICATION

The advantage of black-box verification is that it does not depend on any spe-
cific implementation. Whether the design is implemented in a single ASIC,
RTL code, transaction-level model, gates, multiple FPGAs, a circuit board
or entirely in software, is irrelevant.
A black-box functional verification approach forms a true conformance ver-
ification that can be used to show that a particular design implements the
intent of a specification, regardless of its implementation. A set of black-box
testbenches can be developed on a transaction-level model of the design and
run, unmodified, on the RTL model of the design to demonstrate that they
are equivalent. Black-box testbenches can be used as a set of golden test-
benches.

- In black-box verification, it is difficult to control and observe
specific features.

The pure black-box approach is impractical in todays large designs. A multi-
million gates ASIC possesses too many internal signals and states to effec-
tively verify all of its functionality from its periphery. Critical functions,
deep into the design, will be difficult to control and observe. Furthermore,
a design fault may not readily present symptoms of a flaw at the outputs of
the ASIC. For example, the black-box ASIC-level testbench in Figure is used
to verify a critical round-robin arbiter. If the arbiter is not completely fair in
its implementation, what symptoms would be visible at the outputs? This
type of fault could only be found through performance analysis using several
long simulations to identify discrepancies between the actual throughput of
a channel compared with its theoretical throughput.

Figure 5.4: Black-box verification of a low-level feature

116

CHAPTER 5. VERIFICATION 5.5. FUNCTIONAL VERIFICATION

2. White-Box Verification

- White box verification has intimate knowledge and control of
the internals of a design.

As the name suggests, a white-box approach has full visibility and con-
trollability of the internal structure and implementation of the design being
verified. This method has the advantage of being able to set up an inter-
esting combination of states and inputs quickly, or to isolate a particular
function. It can then easily observe the results as the verification progresses
and immediately report any discrepancies from the expected behavior.

- White-box verification is tied to a specific implementation.

However, this approach is tightly integrated with a particular implemen-
tation. Changes in the design may require changes in the testbench. Fur-
thermore, those testbenches cannot be used in gate-level simulations, on
alternative implementations or future redesigns. It also requires detailed
knowledge of the design implementation to know which significant condi-
tions to create and which results to observe.

- White-box techniques can augment black-box approaches.

White-box verification is a useful complement to black-box verification. This
approach can ensure that low-level implementation specific features behave
properly, such as counters rolling over after reaching their end count value
or datapaths being appropriately steered and sequenced. The white-box ap-
proach can be used only to verify the correctness of the functionality, while
still relying on the black- or grey-box stimulus. Assertions are ideal for im-
plementing white-box checks in RTL code.
For example, Figure 5.4 shows the black-box ASIC-level environment shown
in Figure 5.5 augmented with assertions to verify the functional correctness
of the round-robin arbiter. Should fairness not be implemented correctly,
the white-box checks would immediately report a failure. The reported error
would also make it easier to identify and confirm the cause of the problem,
compared to a two percent throughput discrepancy.

117

5.5. FUNCTIONAL VERIFICATION CHAPTER 5. VERIFICATION

Figure 5.5: White-box checks in black-box environment

- Checkered-box is used in system-level verification.

A checkered-box verification approach is often used on SoC design and system-
level verification. A system is defined as a design composed of independently
designed and verified components. The objective of system-level verification
is to verify the system-level features, not re-verify the individual components.
Because of the large number of possible states and the difficulty in setting
up interesting conditions, system-level verification is often accomplished by
treating it as a collection of black-boxes. The independently designed com-
ponents are treated as black-boxes, but the system itself is treated as a
white-box, with full controllability and observability.

3. Grey-Box Verification

Grey-box verification is a compromise between the aloofness of a black-box
verification and the dependence on the implementation of white-box verifi-
cation. The former may not fully exercise all parts of a design, while the
latter is not portable.

- Test case may not be relevant on another implementation.

As in black-box verification, a grey-box approach controls and observes a
design entirely through its top-level interfaces. However, the particular veri-
fication being accomplished is intended to exercise significant features specific
to the implementation. The same verification of a different implementation
would be successful, but the verification may not be particularly more in-

118

CHAPTER 5. VERIFICATION 5.6. HARDWARE VERIFICATION LANGUAGES

teresting than any other black-box verification. A typical grey-box test case
is one written to increase coverage metrics. The input stimulus is designed
to execute specific lines of code or create a specific set of conditions in the
design. Should the structure (but not the function) of the design change, this
test case, while still correct, may no longer contribute toward better coverage.

- Add functions to the design to increase controllability and ob-
servability .

A typical grey-box strategy is to include some non-functional modifications
to provide additional visibility and controllability. Examples include addi-
tional software-accessible registers to control or observe internal states, speed
up a real-time counter, force the raising of exceptions or modify the size of
the processed data to minimize verification time.
These registers and features would not be used during normal operations,
but they are often valuable during the integration phase of the first proto-
type systems.

- Verification must influence the design.

For non-functional features required by the verification process to exist in a
design, verification must be considered as an integral part of a design. When
architecting a design, the verifiability of that architecture must be assessed
at the same time. If some architectural features promise to be difficult to
verify or exercise, additional observability or controllability features must be
added. This process is called design-for-verification.

- White-box cannot be used in parallel with design.

The black-box and grey-box approaches are the only ones that can be used
if the functional verification is to be implemented in parallel with the imple-
mentation using a transaction-level model of the design. Because there is no
detailed implementation to know about beforehand, these two verification
strategies are the only possible avenue.

5.6 Hardware Verification Languages (HVLs)

A hardware verification language, or HVL, is a programming language used to
verify the designs of electronic circuits written in a hardware description language.
HVLs typically include features of a high-level programming language like C++

119

5.6. HARDWARE VERIFICATION LANGUAGES CHAPTER 5. VERIFICATION

or Java as well as features for easy bit-level manipulation similar to those found
in HDLs. Many HVLs will provide constrained random stimulus generation, and
functional coverage constructs to assist with complex hardware verification.

- Most of Verification Engineers use the following languages for veri-
fying complex digital designs , these languages are :

1. OpenVera

2. e

3. System C

4. System Verilog

We will take a look on each of these languages in the this section.

1. OpenVera :

it is a hardware verification language developed, and managed by Synop-
sys. OpenVera is an interoperable, open hardware verification language for
testbench creation. The OpenVera language was used as the basis for the ad-
vanced verification features in the IEEE Std. 1800 SystemVerilog standard,
for the benefit of the entire verification community including companies in
the semiconductor, systems, IP and EDA industries along with verification
services.

- Vendors supporting OpenVera

• Nusym Technology

• Synopsys

• Axiom Design Automation

• Reference Verification Methodology (RVM)

2. e (Verification Language) :

e is a hardware verification language (HVL) which is tailored to implement-
ing highly flexible and reusable verification testbenches .
e was first developed in 1992 in Israel by Yoav Hollander for his Specman
software. In 1995 he founded a company, InSpec (later renamed Verisity), to
commercialize the software. The product was introduced at the 1996 Design
Automation Conference.Verisity has since been acquired by Cadence Design

120

CHAPTER 5. VERIFICATION 5.6. HARDWARE VERIFICATION LANGUAGES

Systems

- Features of e-language :

• Random and constrained random stimulus generation

• Functional coverage metric definition and collection

• Temporal language that can be used for writing assertions

• Aspect-oriented programming language with reflection capability

• Language is DUT-neutral in that you can use a single e testbench to
verify a SystemC/C++ model, an RTL model, a gate level model, or
even a DUT residing in a hardware acceleration box (using the UVM
Acceleration for e Methodology)

• Can create highly reusable code, especially when the testbench is writ-
ten following the Universal Verification Methodology (UVM)

• Formerly known as e Re-use Methodology (eRM)

3. SystemC :

SystemC is a set of C++ classes and macros which provide an event-driven
simulation interface in C++ (see also discrete event simulation). These facil-
ities enable a designer to simulate concurrent processes, each described using
plain C++ syntax. SystemC processes can communicate in a simulated real-
time environment, using signals of all the data types offered by C++, some
additional ones offered by the SystemC library, as well as user defined. In
certain respects, SystemC deliberately mimics the hardware description lan-
guages VHDL and Verilog, but is more aptly described as a system-level
modeling language.

- Language features

(a) Modules Modules are the basic building blocks of a SystemC design
hierarchy. A SystemC model usually consists of several modules which
communicate via ports. The modules can be thought of as a building
block of SystemC.

(b) Ports Ports allow communication from inside a module to the outside
(usually to other modules) via channels.

(c) Exports Exports incorporate channels and allow communication from
inside a module to the outside (usually to other modules).

121

5.6. HARDWARE VERIFICATION LANGUAGES CHAPTER 5. VERIFICATION

(d) Processes Processes are the main computation elements. They are con-
current.

(e) Channels Channels are the communication elements of SystemC. They
can be either simple wires or complex communication mechanisms like
FIFOs or bus channels.

Elementary channels:

• signal: the equivalent of a wire

• buffer

• fifo

• mutex

• semaphore

(f) Interfaces Ports use interfaces to communicate with channels.

(g) Events Events allow synchronization between processes and must be
defined during initialization.

(h) Data types SystemC introduces several data types which support the
modeling of hardware.

Extended standard types:

• sc int < n > n-bit signed integer

• sc uint < n > n-bit unsigned integer

• sc bigint < n > n-bit signed integer for n>64

• sc biguint < n > n-bit unsigned integer for n>64

Logic types:

• sc bit 2-valued single bit

• sc logic 4-valued single bit

• sc bv<n> vector of length n of sc bit

• sc lv<n> vector of length n of sc logic

Fixed point types:

• sc fixed<> templated signed fixed point

• sc ufixed<> templated unsigned fixed point

• sc fix untemplated signed fixed point

• sc ufix untemplated unsigned fixed point

122

CHAPTER 5. VERIFICATION 5.6. HARDWARE VERIFICATION LANGUAGES

4. System Verilog :

In the semiconductor and electronic design industry, SystemVerilog is a
combined hardware description language and hardware verification language
based on extensions to Verilog.
SystemVerilog started with the donation of the Superlog language to Ac-
cellera in 2002. The bulk of the verification functionality is based on the
OpenVera language donated by Synopsys. In 2005, SystemVerilog was adopted
as IEEE Standard 1800-2005. In 2009, the standard was merged with the
base Verilog (IEEE 1364-2005) standard, creating IEEE Standard 1800-2009.
The current version is IEEE standard 1800-2012.

- The feature-set of SystemVerilog can be divided into two dis-
tinct roles:

(a) SystemVerilog for RTL design is an extension of Verilog-2005; all fea-
tures of that language are available in SystemVerilog.

(b) SystemVerilog for verification uses extensive object-oriented program-
ming techniques and is more closely related to Java than Verilog.

- General improvements to classical Verilog :

In addition to the new features above, SystemVerilog enhances the usability
of Verilog’s existing language features.

The following are some of these enhancements:

• The procedural assignment operator(s) (<=, =) can now operate di-
rectly on arrays.

• Port (inout, input, output) definitions are now expanded to support a
wider variety of datatypes: struct, enum, real, and multi-dimensional
types are supported.

• The for-loop construct now allows automatic variable declaration inside
the for statement. And loop-control is improved by the continue and
break statements.

• SystemVerilog adds a do/while to the while construct.

• Constant variables, i.e. those designated as non-changing during run-
time, can be designated by use of const.

• Variable initialization can now operate on arrays.

123

5.7. DIRECTED VS RANDOM CHAPTER 5. VERIFICATION

• The preprocessor has improved ‘define macro-substitution capabilities,
specifically substitution within literal-strings (””), as well as concate-
nation of multiple macro-tokens into a single word.

• The fork/join construct has been expanded with join none and join
any.

• Additions to the ‘timescale directive allow simulation timescale to be
controlled more predictably in a large simulation environment, with
each source-file using a local timescale.

• Task ports can now be declared ref. A reference gives the task body
direct access to the source arguments. in the caller’s scope. Since
it is operating on the original variable itself, rather than a copy of the
argument’s value, the task/function can modify variables (but not nets)
in the caller’s scope in realtime. The inout/output port-declarations
pass variables by value, and defer updating the caller-scope variable
until the moment the task exits.

• Functions can now be declared void, which means it returns no value.

• Parameters can be declared any type, including user-defined typedefs.

Besides this, SystemVerilog allows convenient interface to foreign languages
(like C/C++), by SystemVerilog DPI (Direct Programming Interface).

5.7 Directed vs Random

As designs grow larger, it becomes more difficult to create a complete set of stimuli
needed to check their functionality. You can write a directed test case to check a
certain set of features, but you cannot write enough directed test cases when the
number of features keeps doubling on each project. Worse yet, the interactions
between all these features are the source for the most devious bugs and are the least
likely to be caught by going through a laundry list of features. The solution is to
create test cases automatically using constrained-random tests (CRT). A directed
test finds the bugs you think are there, but a CRT finds bugs you never thought
about, by using random stimulus. You restrict the test scenarios to those that are
both valid and of interest by using constraints. Creating the environment for a
CRT takes more work than creating one for directed tests. A simple directed test
just applies stimulus, and then you manually check the result. These results are
captured as a golden log file and compared with future simulations to see whether
the test passes or fails. A CRT requires an environment to predict the result, using
a reference model, transfer function, or other techniques, plus functional coverage
to measure the effectiveness of the stimulus. However, once this environment is

124

CHAPTER 5. VERIFICATION 5.7. DIRECTED VS RANDOM

in place, you can run hundreds of tests without having to hand-check the results,
thereby improving your productivity. This trade off of test-authoring time (your
work) for CPU time (machine work) is what makes CRT so valuable.
The first thing you may think of are the data fields. These are the easiest to
create. The problem is that this approach has a very low payback in terms of bugs
found: you only find data-path bugs, perhaps with bit-level mistakes. The test is
still inherently directed. The challenging bugs are in the control logic. As a result,
you need to randomize all decision points in your DUT. Everywhere control paths
diverge, randomization increases the probability that youll take a different path in
each test case

• Device Configuration

What is the most common reason why bugs are missed during testing of
the RTL design? Not enough different configurations have been tried! Most
tests just use the design as it comes out of reset, or apply a fixed set of
initialization vectors to put it into a known state. This is like testing a PCs
operating system right after it has been installed, and without any applica-
tions; of course the performance is fine, and there are no crashes.

• Environment Configuration

The device that you are designing operates in an environment containing
other devices. When you are verifying the DUT, it is connected to a test-
bench that mimics this environment. You should randomize the entire envi-
ronment, including the number of objects and how they are configured.

• Primary Input Data

This is what you probably thought of first when you read about random
stimulus: take a transaction such as a bus write or ATM cell and fi ll it with
some random values. How hard can that be? Actually it is fairly straightfor-
ward as long as you carefully prepare your transaction classes. You should
anticipate any layered protocols and error injection.

• Encapsulated Input Data

Many devices process multiple layers of stimulus. For example, a device
may create TCP traffic that is then encoded in the IP protocol, and fi nally
sent out inside Ethernet packets. Each level has its own control fields that
can be randomized to try new combinations. So you are randomizing the
data and the layers that surround it. You need to write constraints that
create valid control fields but that also allow injecting errors.

125

5.8. UNIVERSAL VERIFICATION METHODOLOGY CHAPTER 5. VERIFICATION

• Protocols, Exceptions and Violations

Anything that can go wrong, will, eventually. The most challenging part
of design and verification is how to handle errors in the system. You need
to anticipate all the cases where things can go wrong, inject them into the
system, and make sure the design handles them gracefully, without locking
up or going into an illegal state. A good verification engineer tests the be-
havior of the design to the edge of the functional specification and sometimes
even beyond. When two devices communicate, what happens if the transfer
stops partway through? Can your testbench simulate these breaks? If there
are error detection and correction fields, you must make sure all combina-
tions are tried. The random component of these errors is that your testbench
should be able to send functionally correct stimuli and then, with the flip of a
configuration bit, start injecting random types of errors at random intervals.

• Delays

Many communication protocols specify ranges of delays. The bus grant
comes one to three cycles after request. Data from the memory is valid
in the fourth to tenth bus cycle. However, many directed tests, optimized
for the fastest simulation, use the shortest latency, except for that one test
that only tries various delays. Your testbench should always use random,
legal delays during every test to try to find that (hopefully) one combination
that exposes a design bug. Below the cycle level, some designs are sensitive
to clock jitter. By sliding the clock edges back and forth by small amounts,
you can make sure your design is not overly sensitive to small changes in the
clock cycle. The clock generator should be in a module outside the testbench
so that it creates events in the Active region along with other design events.
However, the generator should have parameters such as frequency and offset
that can be set by the testbench during the configuration phase.

5.8 Universal Verification Methodology (UVM)

This phase is considered to be independent to main Verification Progress and has
no effect on the current processes. The main target of UVM phase is to proceed
preamble step in the verification process through the next version of Andalus DSP.

5.8.1 Design Specifications

The TMS320C2x central arithmetic logic unit (CALU) contains

126

CHAPTER 5. VERIFICATION 5.8. UNIVERSAL VERIFICATION METHODOLOGY

• 16-bit scaling shifter

– has a 16-bit input connected to the data bus

– has a 32-bit output connected to the ALU.

– The scaling shifter produces a left shift of 0 to 16 bits on the input data,
as programmed in the instruction.

– The LSBs of the output are filled with zeros, and the MSBs may be
either filled with zeros or sign-extended

• 16 16-bit parallel multiplier

– compute a signed or unsigned 32-bit product in a single machine cycle.

– A 16-bit temporary register (TR) that holds one of the operands for
the multiplier.

– A 32-bit product register (PR) that holds the product.

– The output of the product register can be left-shifted 1, 4 or 6 bits.

– TR is loaded via Load T-Register instructions specified in Instruction
set

• 32-bit arithmetic logic unit (ALU)

– The major of operations execute in a single clock cycle

– Perform Arithmetic and Boolean Operation

– One input to the ALU is always provided from the accumulator, and
the other input may be provided from the product register (PR) of the
multiplier or the input scaling shifter that has fetched data from the
RAM on the data bus.

• 32-bit accumulator (ACC)

– The 32-bit accumulator is split into two 16-bit segments for storage
in data memory: ACCH (accumulator high) and ACCL (accumulator
low).

– Shifters at the output of the accumulator provide a left-shift of 0 to 7
places

– This shift is performed while the data is being transferred to the data
bus for storage.

127

5.8. UNIVERSAL VERIFICATION METHODOLOGY CHAPTER 5. VERIFICATION

– The contents of the accumulator remain unchanged. When the ACCH
data is shifted left, the LSBs are transferred from the ACCL, and the
MSBs are lost. When ACCL is shifted left, the LSBs are zero-filled,
and the MSBs are lost.

– additional shifters at the outputs of both the accumulator and the mul-
tiplier.

5.8.2 UVM Environment

UVM Environment mainly aims to generate constrained random stimulus, push
them towards the Device Under Test, check the DUT behavior correctness and
finally check the overall performance of The verification process.
The Goals mentioned above can be achieved through many realizations of simula-
tion environment and we are going to discuss one of them through the rest of this
section.

Sequence

is considered to be a sequence of stimulus formed to be introduced to the DUT.
Actually sequence items form aren’t the actual inputs of the DUT, instead we
encapsulate them into abstract form called Transaction, usage of transaction in-
stead the actual inputs considered to be more efficient than traditional stimulus
representation and will be explained later.

Driver

is the unit which responsible of transform the stimulus from Transaction domain
into Signal-level domain to introduce it to the DUT. Actually driver task is to
represent the physical interaction with the DUT and requires full-understand of
the applied test scenarios.

Monitor

is the unit which receive the DUT response to different stimulus generated by
sequence, check the response validity (Parity, CRC) and check the overall perfor-
mance of the verification progress through the coverage statistics

Scoreboard

is the unit which receive the stimulus generated by sequence, calculate the expected
output, compare it with the actual output of DUT and record all defected test cases
so as to be reported. The theoretical response obtained by apply the stimulus sent

128

CHAPTER 5. VERIFICATION 5.8. UNIVERSAL VERIFICATION METHODOLOGY

by sequence to behavioral model of DUT called Reference Model. This model is
designed according the design specification forwarded from system level designer
or customer.

TLM

Transaction Level Modeling is considered to be highly efficient way to obtain good
stimulus generation. This concept can be explained clearly beyond our DUT.
Transaction in this environment is abstract operations of CALU like addition,
subtraction, multiplication . etc.
Our DUT have 67 pins of input signals and to traditionally verify its behavior,
we need to test all possible inputs (i.e 2 6̂7) possible inputs, but on other hand,
one can notice that not all inputs should affect all DUT operations. For instance,
overflow and carry inputs affect the addition and subtraction operations but never
affect the logical operations like XORing, XNORing and ANDing. Consequently
there is no meaning to test these bits through the logical operations’ test.

CRT

Through the last section we realize the great role of transaction representation of
stimulus and here we raise the importance of constrained random test which follow
the plan made by the verification team and discussed in previous sections.

Sequence

the sequence planed to apply for the DUT aim to divide the test into three layers
of tests named weak, normal and strength. Applying these layers will be done in
the order they explained. Actually these strategy is preferred to avoid wasting of
time, since the design with trivial defects will cause a lot of defected test cases in
high strength layer.

129

5.8. UNIVERSAL VERIFICATION METHODOLOGY CHAPTER 5. VERIFICATION

5.8.3 weak layer

130

CHAPTER 5. VERIFICATION 5.8. UNIVERSAL VERIFICATION METHODOLOGY

5.8.4 Normal layer

131

5.8. UNIVERSAL VERIFICATION METHODOLOGY CHAPTER 5. VERIFICATION

132

CHAPTER 5. VERIFICATION 5.9. VERIFICATION PLAN

5.8.5 strength layer

Through this one, we target the DUT to be stressed under unpredictable sequence
of operations regardless of operations dependency. And it could be formed with
randomize the instructions of the normal layer so that we could be able to pick only
one random instruction from each category and followed it by random operation
extracted from another category.

5.8.6 Driver

Our driver designed to contact with the DUT on the level of signals’ pins, Driver
ask its sequencer to pass him the handle of next transaction, then translate it to
signals level to begin to drive the DUT with the proper inputs.

5.8.7 Monitor

Monitor is designed to receive DUT signal-level response to different transactions
and repack it into transaction form to facilitate coverage and checker analysis.

5.8.8 Scoreboard

Scoreboard is created as checker component that mainly aims to compare results
and store defected test case in associative array. Scoreboard also include refer-
ence model which determine the expected results according design specifications
described above.

5.8.9 Reference Models

Reference model has been chosen at the field of checkers over other possibilities
due to large combination of inputs could be tested which make it the best choice
and designed in abstract level to receive transaction from sequencer and proceed
its theoretical output to Scoreboard. Its hierarchy consists of control function
which receive the transaction and call another sub-control function which in turn
call another computational function that predict the expected output.

5.9 verification plan

Verification plan in this project had been modified too many times to satisfy needs
and to find design defects. This plan consists of phases, every phase has its mission.

• First fire.

133

5.9. VERIFICATION PLAN CHAPTER 5. VERIFICATION

• Block function Verification.

• Block access repetition.

• Integration phase.

5.9.1 1st phase: First fire: (simple instructions)

In this phase, our goal is to fire the DSP core and to make sure this design need
fixing not redesigning. This phase is the smallest phase with respect to time. Its
top aim is to validate that clock drive the core, works PC (program counter) counts
without errors, Fetching and Decoding from memory fine without any confliction.

5.9.2 2nd phase: Block function Verification:

This phase aims to test the functionality of each block and treat it as black box.
With the assembler, small codes are written to access whole core blocks deeply.
This phase is not only testing blocks validation but also test flags.

Ex1:

LACK 30h
ADDLK 20h

In this example, the code written to access the core adder and check its func-
tionality

Ex2:

LACK 30h
LT 20h
MPYK 60h

In this example, this code accesses the Multiplier block. Note that , in this phase
our 1st goal to test functionality of blocks only, observe that immediate address-
ing mode to avoid any bugs (if existing) comes from memory as possible as we can.

Ex3:

LAC 30h
SACH 40h

134

CHAPTER 5. VERIFICATION 5.9. VERIFICATION PLAN

SACL 41h

Here this code aims to access data memory and check reading and writing op-
erations with direct address mode and so on to all block.

This phase consumes too much times because this phase time needs RTL edit
and to fix all bugs in the blocks design, otherwise testing all Instruction set.

5.9.3 3rd phase: Block access repetition:

This phase is not testing blocks functionality, but the main task is to repeat ac-
cessing same block to check Fetching, Decoding, executing.

Ex1:

ADDK 20h
ADLK 0FECAh
ADDC *+
SUBK 30h
SBLK 15h
SUB *+
SUBB *+

Note that, this code is to repeat accessing on Adder/Subtractor in ALU unit.

Ex2:

OR *+
ORK 30h
ANDK 4Ch
AND *+
XOR *+

Here this simple code is to access the Logic operations in ALU unit multiple
times

Ex3

LALK 0C165h
SFR
SFL

135

5.9. VERIFICATION PLAN CHAPTER 5. VERIFICATION

ROL
ROR

Note that, this simple code aims to access shifter unit in ALU.

5.9.4 4th phase: Integration phase:

This phase is the longest phase in functional Verification,
This phase mission is to test core with respect to all previous types of test, like,
Memory Operations:
Data Memory Reading and Writing, Storing, Branching, Block functionality, Pro-
gram Memory, Control unit:
Fetching, Decoding, block functionality: Adder, Shifter, Register files, Addressing
modes, Stack: PUSH, POP, Etc.
Figure blow shows flow diagram of Verification Integration phase:

• ALU: ALU operations (Addition, Subtraction)

• Logic: Logic Operations.

• Shift: Shifting Operations.

• Stack: PUSH and POP operations.

• Mul: Multiplication operations.

• Memory: Read & Write operations on Data memory.

• Branch: Branching and Jumping Conditional and non-Conditional.

• Forcing: Zeroing Accumulator.

136

CHAPTER 5. VERIFICATION 5.9. VERIFICATION PLAN

137

5.9. VERIFICATION PLAN CHAPTER 5. VERIFICATION

138

CHAPTER 5. VERIFICATION 5.9. VERIFICATION PLAN

139

5.9. VERIFICATION PLAN CHAPTER 5. VERIFICATION

Each blue bubble in this figure every time runs with different Assembly code
for example, Writing code to represent first bubble in figure(1), Bubble is ALU,
here we run the code with ALU representation as Instruction like, ADDK 20h ,
the next time we run the code with replacing ADDK 20h with ADD 30h here
we tested 2 kinds of addressing mode with the same bubble to cover almost all
Instructions Sequence can be written in the future by programmers or Users.
Integration phase aims to penetrate all micro-element in the design and to test the
full validity of the DSP core.
Before Eliminating Interrupt and Serial Units due to problems occur with Backend
and Design team, the Integration phase comprise this units and has its indepen-
dent tests and codes, and these blocks had been tested and fixed from bugs ,and
It was working fine as RTL design.
An example achieves the Integration phase, (Matches figures):

LDPK 0
LARP AR7
LARK AR7, 60h
ADDK 53h
LT *+
MPYK 0CFh
ZAC
APAC
ANDK 00FFh
ROR
ADDC *+
SFL
SUBK 0Fh
PUSH
ADDK 20h
ZAC
ADD 78h
POP
ADLK 6CEDh
SACH *+
SACL *+
SUBK 01h
LALK 6543h
B frst
* Unreachable statements
SFL

140

CHAPTER 5. VERIFICATION 5.9. VERIFICATION PLAN

LACK 5h
frst NOP * bubble insertion (eliminate branching hazards)
LT *+
MPYK 0C1h
ZAC
APAC
XORK 0F0F0h
ROL
PUSH
ZAC
MPYK 11h
APAC
BNZ scnd
MPYK 21h
scnd NOP
POP
CMPL
SFL
OR *+
PUSH
AND *+
POP
NEG
LAC *+
XOR *+
SACL *+
SACH *+
PUSH
AND *+
POP
CMPL
ZAC
BZ Branch1
* Unreachable statements
PUSH
SACL *+, 5
NEG
Branch1 NOP
LAC *+
ROL

141

5.9. VERIFICATION PLAN CHAPTER 5. VERIFICATION

PUSH
SFL
POP
SFR
ZALH 63h
ROL
SACL *+
SACH *+
SFL
LALK 0A55Ah
SFR
BNC Branch2
* Unreachable statements
ZAC
SACL *+
SACH *+
Branch2 NOP
ROR
BNC Branch3
PUSH
Branch3 NOP
BGEZ Branch4
* Unreachable statements
NEG
ZAC
Branch4 NOP
POP
SACL *-
SACH *-
PUSH
LAC *+
BLZ Branch5
* Unreachable statements
LT 50h
MPYK 47h
ZAC
APAC
SACL *+
SACH *+
Branch5 NOP

142

CHAPTER 5. VERIFICATION 5.9. VERIFICATION PLAN

SACL *+
SACH *+
ZAC
B Branch6
*Un reachable statements begin
LT 50h
MPYK 47h
APAC
LALK 0ffffh
SACL *+
SACH *-
*Un reachable statements end
Branch6 NOP
LAC *+
ADLK 0FA02h
NOP
SACL *+
SACH *+
NOP

Figure 5.6: Part of simulation of Post layout

Bugs discovered: - without Hazards (next section)-

• Combinational loops. Two signals were looping on each other in an infinite
loop.

• Bugs in some Instructions. Some instructions have a problems in Decoding,
as

CMPL Fixed.

OR Fixed.

PAC Not fixed.

SBLK Not fixed.

143

5.9. VERIFICATION PLAN CHAPTER 5. VERIFICATION

• Interfacing with External memory. Interfacing with External memory with
its model had has some challenges like timing in Writing cycles and reading
cycles.

5.9.5 Hazards:

• Data hazards: Data hazards occur when instructions that exhibit data de-
pendence modify data in different stages of a pipeline. Ignoring potential
data hazards can result in race conditions. There are three situations in
which a data hazard can occur:

1. Read after write (RAW).

2. Write after read (WAR).

3. Write after write (WAW).

1. Read after write (RAW):

In these hazards, the read process happens after the write process, al-
though both processes happen in the same clock cycle. If the write
process takes a long time, it may not complete by the time the read
occurs, which will produce incorrect data.

Ex:

SACL *+ #save accumulator to memory
LAC *+ #load accumulator from memory

2. Write after read (WAR):

In a WAR hazard, the write from a previous instruction will not com-
plete before the successive read instruction. This means that the next
value read will be a previous value, not the correct current value.

Ex:

LT *+ #load T register
SPL*+ #store low P register to memory

144

CHAPTER 5. VERIFICATION 5.9. VERIFICATION PLAN

3. Write after write (WAW):

WAW hazards occur when two processes try to write to a data stor-
age element at the same time. If this occurs in a single clock cycle,
there will be no time in between to read the intermediate value. If the
instructions execute out of order, the incorrect value may be left in the
register and the current written value may be a previous written value.

Ex:

SACL *+
SACH *+

• Control Hazards (Branching Hazards):

Control hazards occur when a branch instruction is processed. While the
branch instruction is traveling through the pipeline, the instruction fetch
module will continue to read sequential instructions from the instruction
memory. The problem is that because of the branch, the next instructions
might execute out of order, which will cause problems. DSP doesn’t know
which instructions to execute after the branch until he knows whether the
branch was taken or not.

Ex:

B Branch1
* Unreachable statements
Branch1 LAC *+

Hazards Eliminating

Data hazards:

In our Design data hazards solved in 3 stages:

- First treatment is inserting bubble instruction (NOP No Operation)

Ex:

SACL *+

145

5.9. VERIFICATION PLAN CHAPTER 5. VERIFICATION

NOP
SACH *+

-Second choice is to insert PLL (Phase-locked loop), that control the memory
perfectly and tuning timing.

Control Hazards (Branching Hazards):

Eliminating control hazards done by inserting (NOP) after branching label, this
solution called (Software solution) or (programmer solution) Due to programmer
involvement.

Ex:

B Branch1
* Unreachable statements
Branch1 NOP
LAC *+

146

References

[1] Maria Elena Angoletta. Digital signal processor fundamentals and system de-
sign. 2008.

[2] Khosrow Golshan. Physical design essentials: An ASIC design implementation
perspective. Springer, 2007.

[3] Steven W Smith. Digital signal processing: a practical guide for engineers and
scientists. Newnes, 2003.

[4] Texas Instruments. Tms320c25 users guide. Digital Signal Processor Products,
preliminary, 1986.

[5] Andalus cordoba final report.

[6] Cy7c1041cv33 data sheet.

[7] www.ti.com.

[8] Chris Spear. Systemverilog for verification-a guide to learning the testbench
language features. sl, 2008.

[9] Bruce Wile, John C Goss, and Wolfgang Roesner. Comprehensive Functional
Verification: The Complete Industry Cycle. Morgan Kaufmann, 2005.

147

	Introduction
	Andalus-DSP
	Cordoba phase
	Toledo Phase
	Book overview

	Scientific background
	DSP
	What is a DSP?
	DSP evolution and current scenery
	DSP architecture
	DSP applications

	ASIC Flow
	Introduction
	Generalized ASIC Design Flow
	ASIC physical design flow

	Architecture
	Overview
	Signals description
	HDL CPU signal description

	Registers Description
	Memory Addressing Modes
	Direct Addressing Mode
	Indirect Addressing Mode
	Immediate Addressing Mode

	Instruction Set
	Instruction symbols
	Instruction set summary

	Toledo Block Diagram
	Control Unit
	Block Diagram
	Block Description
	Internal Blocks Description
	Hazards control
	Implementation Notes

	Instruction Decoder
	Block Diagram
	Block Description
	Ports Description
	 Implementation Notes

	Shifter
	Block Diagram
	Block Description
	Ports Description
	Implementation Notes

	Descaling Shifter
	Block Description
	Ports Description
	Implementation Notes

	Scaling Shifter
	Block Description
	Implementation Notes

	Register File
	Block Diagram
	Implementation Notes

	CALU
	Block diagram
	Block Description

	Interrupts
	Architecture Changes

	Synthesis and layout
	Synthesis
	Synthesis Process
	Faraday's 130nm
	Timing Constraints
	Synthesis Results

	Pads and Power
	Physical Design
	Design Planning
	Chip specifications
	Bonding pads

	Layout
	Technology Files
	SoC Encounter
	Core and Pads Placement
	Clock Tree and Power Analysis
	Bonding Pad Placement
	Filler Cell and Route

	Tapeout
	Introduction
	Defining the standard core cells and IO cells library

	Importing GDSII
	Importing netlist
	DRC
	LVS

	Verification
	What is verification
	Why do we need verification
	What to Verify ?
	Different kinds of Verification
	Functional Verification
	Functional Verification Approaches

	Hardware Verification Languages
	Directed vs Random
	Universal Verification Methodology
	Design Specifications
	UVM Environment
	weak layer
	Normal layer
	strength layer
	Driver
	Monitor
	Scoreboard
	Reference Models

	verification plan
	1st phase: First fire: (simple instructions)
	2nd phase: Block function Verification:
	3rd phase: Block access repetition:
	4th phase: Integration phase:
	Hazards:

